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Three related questions

• Moduli stabilization

• De Sitter

• Inflation

7 Quantum Initial Conditions

One of the most remarkable features of inflation is that it provides a natural mechanism for

producing the initial conditions for the hot big bang. To see this, recall that the evolution of the

inflaton field �(t) governs the energy density of the early universe ⇢(t) and, hence, controls the end

of inflation (see Fig. 20). Essentially, the field � plays the role of a “clock” reading o↵ the amount

of inflationary expansion still to occur. By the uncertainty principle, arbitrarily precise timing is

not possible in quantum mechanics. Instead, quantum-mechanical clocks necessarily have some

variance, so the inflaton will have spatially varying fluctuations ��(t,x). There will therefore be

local di↵erences in the time when inflation ends, �t(x), so that di↵erent regions of space inflate

by di↵erent amounts. These di↵erences in the local expansion histories lead to di↵erences in the

local densities after inflation, �⇢(t,x), and to curvature perturbations in comoving gauge, ⇣(x).

It is worth remarking that the theory was not engineered to produce these fluctuations, but that

their origin is instead a natural consequence of treating inflation quantum mechanically.

Figure 20. Quantum fluctuations ��(t,x) around the classical background evolution �̄(t). Regions acquir-
ing negative fluctuations �� remain potential-dominated longer than regions with positive ��. Di↵erent
parts of the universe therefore undergo slightly di↵erent evolutions. After inflation, this induces density
fluctuations �⇢(t,x).

7.1 Quantum Fluctuations

7.1.1 Free Scalar in de Sitter

Before attacking the real problem of interest, namely the quantization of coupled inflaton-metric

fluctuations during inflation, we will consider the simpler case of a free scalar field in de Sitter

space. We will assume that the scalar field carries an insignificant amount of the total energy

density and, hence, doesn’t backreact on the de Sitter geometry. Such a field is sometimes called

a spectator field.

The action of a massless, free scalar field in de Sitter space is
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Figure 1: Scalar potential for A = 1, B = �25, C = 156.25, b0 = �b1 = 1.
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Then, using the leading order expression for the RG solution for ↵:

↵ ⇠ 1

b0 � b1 log ⌧
(1.9)

we can plug this in the in the scalar potential above and can search for minima of

the potential. Typically for small ↵ and coe�cients of order one the behaviour will

be a runaway, However for particular values of the coe�cients A,B,C, · · · there may

be non-trivial solutions. In particular, if C � B � A it is possible to find minima of

the potential for which ↵ ⌧ 1 and the value of the potential at the minimum can be

positive or negative.

2. Multiplicative Logs

Let us now slightly modify the log dependence on the Kähler potential.

K = �3 log ((T + T
⇤
)F (log(T + T

⇤
)) := �3 logP(⌧) (1.10)
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Figure 1: A plot of V vs ⌧ for the scalar potential V = U(ln ⌧)/⌧4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima ⌧ = ⌧0 of this potential generically occur in the regime where ↵(⌧0) ⇠
O(1). But if stabilization of other moduli make ↵g0 small, then inspection of (2.10) shows

that ⌧0 must be very large because ↵g0 ln ⌧0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� ⇠
����
U2

U3

���� ⇠ O(✏) (2.12)

for some smallish ✏ ⌧ 1. Such a hierarchy allows solutions to @V/@⌧ |⌧0 = 0 for ↵0 ⇠ O(✏)

and so

b1 ln ⌧0 = ↵
�1
g0 � ✏

�1 (2.13)

can easily be order 1/✏ if ✏ ⌧ ↵g0 and b1 < 0. For ✏ <⇠ 1/10 the value predicted for ⌧0 can be

enormous ⌧0 ⇠ e
1/✏, justifying the validity of the 1/⌧ expansion ex post facto. As is easy to

check, when 9U2
2 > 32U1U3 the potential has a local minimum at ⌧0 that is separated from

the runaway to ⌧ ! 1 by a local maximum at ⌧1 > ⌧0 (see Fig. 1).

The value of the potential at this minimum is positive if U
2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(⌧0) ⇠ O(✏4) when

U3 ⇠ O(1), it happens that the condition V
0(⌧0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(⌧0) ⇠ O(✏5). As a result both V (⌧0)

and ⌧
2(@2

V/@⌧
2)
��
⌧0

are O(✏5|w0|2/⌧40 ), and this can be extremely small given that ⌧0 can be
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Dine-Seiberg Problem

V 𝟎 at weak coupling and large volume. 

Dine, Seiberg 1985

Only fully trust runaway part 
(swampland conjecture, Vafa et al)
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e.g.Loop and 𝜶’ corrections in IIB

The ‘Dine-Seiberg’ problem

Crucially, fields like s and V are moduli, in that their values are often not fixed by the leading

classical field equations. This means their vacuum values can be determined by energetic

arguments purely within a four-dimensional low-energy e↵ective theory through their ap-

pearance within a scalar potential that is to be minimized. Performing this stabilization is

a prerequisite for making practical predictions because particle masses and couplings depend

on the resulting stabilized values in an important way. However this potential itself typically

arises as an expansion in these fields, as in

V (s, ⌧) =
X

nm

Anms
�n

⌧
�m

, (1.1)

and (as first articulated in early searches for realistic string compactifications by Dine and

Seiberg [1]) this leads to the problem.

On one hand, if the leading term is positive then the scalar potential slopes o↵ towards

zero in the limit of vanishing string coupling 1/s ! 0 and infinite volume ⌧ ! 1. But

this stationary point of the potential corresponds to 10D flat space and so does not describe

what we see around us, and lies beyond the reach of the 4D EFT. Ref. [1] then argues that

if the potential has a non-trivial minimum, as is required to avoid the runaway to infinity,

di↵erent orders in these expansions must compete with one another (e.g. quantum e↵ects must

compete with the classical results) signalling the breakdown of the perturbative expansion

itself. They concluded that the generic weak-coupling situation is a runaway without a non-

trivial minimum. Conversely, if a non-trivial minimum exists then it should generically arise

at strong coupling with an extra-dimensional volume of order the string scale: s ⇠ ⌧ ⇠ 1.

This argument can also be cast in terms of two accidental approximate scale invariances that

turn out to be shared by all string vacua, for which s and ⌧ play the role of pseudo Goldstone

modes and 10D flat space corresponds to the scale invariant point (see for instance [2]).

Of course the key word in this argument is ‘generic’. Over the years many e↵orts were

made to overcome this general problem and obtain weak couplings and large hierarchies in

controlled ways. The solutions usually exploit the few parameters that are not vevs of moduli

that can be adjusted to provide non-generic solutions with weak coupling and large volume.

These parameters include the curvature of the extra dimensions, non-critical dimensionality,

the ranks of the various symmetry groups, or integer flux quantum numbers for antisymmetric

tensor fields that thread compact extra dimensions (similar to magnetic flux threading a

sphere – see [3] for a review).

In particular IIB string compactifications have been much explored with successful sce-

narios using a combination of the huge number of possible fluxes and various small non-

perturbative e↵ects, leading to two main approaches for stabilizing moduli in IIB vacua. The

first of these – the ‘KKLT’ scenario – exploits the vast number of fluxes to tune the tree-

level superpotential to be exponentially small (so as to compete with small non-perturbative

contributions to the superpotential [4, 5]). The second class – the ‘large-volume scenario’ or

LVS – instead finds solutions with stabilized moduli by balancing di↵erent orders of di↵erent
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Dine-Seiberg:
If it has a minimum is generically at s, 𝝉 of order 1

an exponential of 1/✏. Ref. [11] explores some of the implications if this suppression were to

explain the size of the present-day Dark Energy density.

Because U(⌧0) can have either sign both de Sitter and anti-de Sitter solutions can be

generated in this way depending on the values of the coe�cients U0, U1 and U2. Both signs

are allowed because (2.4) shows that supersymmetry is broken for any finite ⌧ . It breaks

because the auxiliary field F
T for the T supermultiplet is nonzero, since w0 6= 0, even though

WT vanishes. Its size is instead controlled by the Planck suppressed term KTW/M
2
p 2 DTW .

This type of supersymmetry breaking is common in no-scale models and is responsible for

many of the unusual properties encountered in [11]. This source of supersymmetry breaking

is easily missed in global supersymmetry because it disappears in the Mp ! 1 limit.

2.3 Type IIB string theory realization

We next expand on how the above mechanism arises in the low-energy limit of Type IIB

string vacua. One purpose in doing so is to identify the scales to which this stabilization

mechanism points. Another purpose is to see how such an explicitly perturbative mechanism

evades the well-known challenges posed by the Dine-Seiberg problem [1]. We discuss each of

these issues after first making the connection to IIB vacua more explicit.

The massless bosonic fields in the 10D supergravity relevant to Type IIB vacua below

the string scale are

g̃MN , S = s�iC, G(3) = H(3)+iSF(3), F̃(5) = dC(4)+
1

2
C(2)^H(3)+

1

2
B(2)^F(3) (2.14)

where a subscript (p) indicates that the corresponding field is a p-form, s = e
��̂ is the 10D

dilaton3 that controls the local string coupling and C is an axionic scalar while H(3) = dB(2)

and F(3) = dC(2) are field strengths for 2-form gauge potentials. At the two-derivative level

the action for these fields takes the schematic form

Sbulk =

Z
d10x

p
�g̃

(
R̃� |@S|2

(ReS)2 �
|G(3)|2

ReS � F̃
2
(5)

)
+

Z
1

ReS
C(4) ^G(3) ^G(3) , (2.15)

This action has two accidental symmetries that are important for our present purposes:

• An SL(2,R) symmetry under which

S ! aS � ib

icS + d
and G(3) !

G(3)

icS + d
, (2.16)

where ad � bc = 1. Note that the special case b = c = 0 and a = 1/d reduces to a

classical scaling symmetry

g̃MN ! g̃MN , S ! a
2S , G(3) ! aG(3) , F̃(5) ! F̃(5) . (2.17)

3The hat on �̂ distinguishes the string dilaton from the inflaton field � used everywhere else in this paper.
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• An approximate accidental scale invariance

g̃MN ! �g̃MN , S ! S , B(2) ! �B(2) , C(2) ! �C(2) . C(4) ! �
2
C(4) .

(2.18)

under which the tree level action scales as Sbulk ! �
4
Sbulk. Upon compactification to

four dimensions the non-trivial scaling of the 10D metric implies an overall scaling of

the volume modulus V ! �
3V.

These two approximate symmetries are accidental in the sense that they are broken by

↵
0 and loop corrections to the e↵ective action. Indeed, how terms scale under these two

transformations can be used to identify how the 10D action depends on these two expansions

[2]. For the 4D theory, the ↵0 expansion becomes an expansion in inverse powers of the volume

V := ⌧
3/2 while the string-loop expansion is in powers of (ReS)�1 = e

�̂.

Both scaling symmetries are spontaneously broken inasmuch as neither leaves generic

background fields unchanged and the volume modulus and the string dilaton can be regarded

as their pseudo-Goldstone dilaton modes. From this point of view 10D flat space is special

inasmuch as it leaves a scale invariance unbroken because (2.18) does not act on S and scale

transformations of the flat metric can be compensated by a di↵eomorphism. 10D flat space

corresponds in 4D to V ! 1 and s ! 1 and the scale-invariance of this point anchors the

asymptotic value of the 4D scalar potential to zero.

2.3.1 IIB modulus stabilization

String theory famously has no parameters, but if so what are the choices that lead to di↵er-

ently shaped compactifications? For IIB Calabi-Yau orientifold compactifications the choices

made are the quantized fluxes of the three-form fields whose presence and stress-energy sta-

bilizes the complex structure moduli U and string dilaton S, as pioneered in [4]. For super-

symmetric flux configurations these moduli are fixed in the 4D e↵ective description by the

supersymmetric conditions DSW = DUW = 0.

The choice of higher-dimensional fluxes shows up in the low-energy 4D theory in several

ways. First, (0, 3) fluxes induce a non-trivial superpotential w0 2 W that is generically order

unity (in Planck units) but can be arranged to take larger – or extremely small [39] – values.

Second, since fluxes fix the string dilaton field S they provide a ‘discretuum’ of possible values

for the string coupling constant gs ⇠ s
�1 in the 4D theory. Third, fluxes can fix the complex

structure moduli in such a way that the corresponding three-cycles in the extra-dimensional

geometry become long throats along which 4D geometries are naturally warped with warp

factor e
A ⇠ e

8⇡K/gsM , where K,M are integers. The three quantities w0, gs and e
A play

important roles defining the di↵erent scales that arise within the 4D theory.

The Calabi-Yau space’s Kähler moduli are not similarly fixed by these fluxes and so their

potential is naturally explored within the 4D theory. The simplest case arises for Calabi-

Yau orientifiolds that have the fewest possible Kähler moduli: the single complex modulus

T = 1
2(⌧ + ia) whose real part describes the overall volume V / ⌧

3/2 of the Calabi-Yau and

whose imaginary part a is an axionic partner. The shift symmetry for this axion a ! a + c
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can forbid4 its appearance in the superpotential W . The leading expression for the Kähler

potential for T is well known to be of the no-scale type

K(T, T ) = �2 lnV = �3 ln ⌧ , (2.19)

as can be derived either from explicit dimensional reduction or using the transformation

properties of the 4D action under the approximate accidental scaling symmetries (2.17) and

(2.18).

As discussed earlier, the conditionWT = 0 together with the no-scale identityK
AB

K
A
KB =

3 satisfied by the Kähler potential (2.19) ensures the scalar potential (2.3) is independent of

⌧ and this precisely reproduces the microscopic statement that Kähler moduli are not fixed in

the underlying flux construction at leading order in string coupling and ↵
0. Kähler modulus

stabilization proceeds because higher-order corrections lift this flatness and so can stabilize

fields like T . At present the main approaches to modulus stabilization drive this stabilization

by introducing a T -dependent contribution to the superpotential, which can arise nonpertur-

batively in 1/⌧ through contributions of the form �W = Wnp / e
�⇠ T for some ⇠. Introducing

T -dependence to W lifts the flatness of the no-scale potential, and can be consistent with the

underlying 1/⌧ expansion either if w0 happens to be extremely small [5] or by considering

multiple Kähler moduli, ⌧v and ⌧s and having ⌧v ⇠ e
⇠⌧s so that powers of 1/⌧v can compete

with �W / e
�⇠ Ts [6, 7].

We instead here do not introduce a T -dependence to W at all, and considering only per-

turbative corrections to K (that would in any case normally dominate over non-perturbative

e↵ects). Denoting s = ReS = e
��, in general [2] perturbative corrections to K in powers of

1/s and 1/⌧ can be written as

e
�K/3 = s

1/3
⌧

X

nmr

Anmr

✓
1

s

◆n ⇣
s

⌧

⌘(m+r)/2
, (2.20)

with n counting string loops and the ↵
0 expansion receives contributions from r powers of

extra-dimensional curvature and m+1 powers of 3-form flux G(3). The coe�cients Anmr here

are to be regarded as functions of all other moduli5, but the powers of s and ⌧ associated

with the string-loop and ↵
0 expansions are explicit. Tracking only the volume dependence

then shows that the Kähler potential can be written as the following expansion in powers of

1/⌧

K(T, T ) = �3 lnP, with P(⌧) = ⌧


1� k

⌧
+

h

⌧3/2
+O

✓
1

⌧2

◆�
. (2.21)

4Whether it does or not depends on whether the corresponding symmetry has an anomaly. If so W can

depend exponentially on T . T -dependent corrections to W that are perturbative in 1/T are forbidden by the

supersymmetric non-renormalization theorems [40, 35, 36].
5A crucial di↵erence in our approach is to consider that the coe�cients Anmr can have a ln ⌧ dependence.
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Yau orientifiolds that have the fewest possible Kähler moduli: the single complex modulus

T = 1
2(⌧ + ia) whose real part describes the overall volume V / ⌧

3/2 of the Calabi-Yau and

whose imaginary part a is an axionic partner. The shift symmetry for this axion a ! a + c
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• An approximate accidental scale invariance

g̃MN ! �g̃MN , S ! S , B(2) ! �B(2) , C(2) ! �C(2) . C(4) ! �
2
C(4) .

(2.18)

under which the tree level action scales as Sbulk ! �
4
Sbulk. Upon compactification to

four dimensions the non-trivial scaling of the 10D metric implies an overall scaling of

the volume modulus V ! �
3V.

These two approximate symmetries are accidental in the sense that they are broken by

↵
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an exponential of 1/✏. Ref. [11] explores some of the implications if this suppression were to

explain the size of the present-day Dark Energy density.

Because U(⌧0) can have either sign both de Sitter and anti-de Sitter solutions can be

generated in this way depending on the values of the coe�cients U0, U1 and U2. Both signs

are allowed because (2.4) shows that supersymmetry is broken for any finite ⌧ . It breaks

because the auxiliary field F
T for the T supermultiplet is nonzero, since w0 6= 0, even though

WT vanishes. Its size is instead controlled by the Planck suppressed term KTW/M
2
p 2 DTW .

This type of supersymmetry breaking is common in no-scale models and is responsible for

many of the unusual properties encountered in [11]. This source of supersymmetry breaking

is easily missed in global supersymmetry because it disappears in the Mp ! 1 limit.

2.3 Type IIB string theory realization

We next expand on how the above mechanism arises in the low-energy limit of Type IIB

string vacua. One purpose in doing so is to identify the scales to which this stabilization

mechanism points. Another purpose is to see how such an explicitly perturbative mechanism

evades the well-known challenges posed by the Dine-Seiberg problem [1]. We discuss each of

these issues after first making the connection to IIB vacua more explicit.

The massless bosonic fields in the 10D supergravity relevant to Type IIB vacua below

the string scale are

g̃MN , S = s�iC, G(3) = H(3)+iSF(3), F̃(5) = dC(4)+
1

2
C(2)^H(3)+

1

2
B(2)^F(3) (2.14)

where a subscript (p) indicates that the corresponding field is a p-form, s = e
��̂ is the 10D

dilaton3 that controls the local string coupling and C is an axionic scalar while H(3) = dB(2)

and F(3) = dC(2) are field strengths for 2-form gauge potentials. At the two-derivative level

the action for these fields takes the schematic form

Sbulk =

Z
d10x

p
�g̃

(
R̃� |@S|2

(ReS)2 �
|G(3)|2

ReS � F̃
2
(5)

)
+

Z
1

ReS
C(4) ^G(3) ^G(3) , (2.15)

This action has two accidental symmetries that are important for our present purposes:

• An SL(2,R) symmetry under which

S ! aS � ib

icS + d
and G(3) !

G(3)

icS + d
, (2.16)

where ad � bc = 1. Note that the special case b = c = 0 and a = 1/d reduces to a

classical scaling symmetry

g̃MN ! g̃MN , S ! a
2S , G(3) ! aG(3) , F̃(5) ! F̃(5) . (2.17)

3The hat on �̂ distinguishes the string dilaton from the inflaton field � used everywhere else in this paper.
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Quick Overview of Flux compactifications
• Tree-level Kahler potential:

• Tree-level superpotential:

• Flux quantisation:
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Ansatz for the Kähler potential. Conditions:

• It is at most quadratic in the fibre coordinates ⇣.

• It reduces to the sum of separate Kähler potentials for the base and

the fibre in the limit of trivial fibration. With the base having volume

V3 and the fibre with volume v0.

• Scale out the dimensionality of the coordinates by their relevant length

scale v
1
2
0 for the fibre coordinates and V

1
6
3 for the base coordinates.

• Keep the dimensionality two of K by scaling an overall factor of v
1
2
0 V

1
6
3

that will be carried to the metric and guarantee that the overall volume

of the manifold is given by v0V3

Then the Kähler potential can be written as:

K(z, z̄, ⇣, ⇣̄) = v
1
2
0 V

1
6
3

⇥
A(z, z̄)✏�1 +B(z, z̄)(⇣ + ⇣̄) + C(z, z̄)(⇣ + ⇣̄)2✏

⇤
(5)

with A,B,C so far arbitrary functions that may be constrained later on. A is

the Kähler potential of the base and if B,C are constants this would reduce

to the Kähler potential for the product manifold for a trivial fibration.

✏ ⌘
v102

V
1
6
3

(6)

1



• S,U,T Moduli

• Quantum corrections
• Three options:  (i)

(ii)

(iii)

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

V = e
K
⇣
K

�1
ab̄

DaWDb̄W

⌘
� 0 (2.5)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-
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If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
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Fix T-moduli: LVS

No-scale

Fluxes fix S,U but T flat

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold
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Challenges to KKLT, LVS,...
• Fluxes under control only in SUSY 10D? (Sethi, Kachru-Trivedi, de Alwis et al…)

• All SUSY breaking part is 4D EFT. Trust EFT?(Carta, et al, Moritz et al, Kallosh, Gautason

et al, Hamada et al, Kachru et al.)

• Higher corrections in LVS? (Cicoli et al.)

• Antibranes (non susy, singularity?) (Bena et al, Moritz et al, Cohen-Maldonado et al, Gao  et al) 

• Tadpole problem (Bena et al., Crino et al, Junghans, Xin Gao et al, Vafa et al…)

• Consistency with AdS/CFT (de Alwis et al, Conlon et al, Vafa et al…)

• Tuning W0<<1? in KKLT (Demirtas et al, Alvarez-Garcia et al, Blumenhagen et al)



RG induced moduli stabilization
An Alternative to KKLT/LVS?

C.P. Burgess + FQ 2202.05344



To this end, following the ideas of [10] and [11], we imagine that k acquires its depen-

dence on ln ⌧ through the running of some dimensionless coupling ↵g, due to a perturbative

expansion of the form

k ' k0 + k1 ↵g +
k2

2
↵
2
g + · · · (2.7)

with a dimensionless coupling ↵g ⌧ 1. In general the running of a dimensionless coupling like

↵g introduces logarithms of mass ratios, such as when its renormalization-group evolution is

integrated to give
1

↵g(m1)
=

1

↵g(m2)
� b1 ln

✓
m1

m2

◆
. (2.8)

The main observation is that this can become a dependence1 on ln ⌧ if there are multiple

fields coupling to this interaction whose masses2 depend di↵erently on ⌧ .

Such interactions do plausibly arise in string compactifications. For instance in IIB

compactifications particles localized on D3 and D7 branes have masses that depend di↵erently

on the volume modulus and when such branes intersect they can both couple to light open-

string 4D gauge fields (whose gauge coupling could be the ↵g considered here).

In such a situation (2.7) predicts a logarithmic ⌧ dependence for k that emerges through

the ⌧ -dependence of ↵g, which in turn can be expressed through a renormalization-group

evolution like

⌧
d↵g

d⌧
= �(↵g) = b1↵

2
g + b2 ↵

3
g + · · · . (2.9)

For ↵g small enough to neglect all but the leading term in � this has solution

↵g(⌧) =
↵g0

1� b1 ↵g0 ln ⌧
, (2.10)

for some integration constant ↵g0 = ↵g(⌧ = 1). For the present purposes what is important

about the ln ⌧ dependence given in (2.10) is that its derivation neglects only additional powers

of ↵g in (2.9). Consequently for large ⌧ it remains valid to all orders in ↵g ln ⌧ while dropping

contributions of order ↵
2
g ln ⌧ . It is this renormalization-group resummation that ultimately

allows us to trust minima of the potential that occur in the regime ln ⌧ ⇠ 1/↵g.

Now comes the main point. Using (2.7) and (2.9) to evaluate the T -derivatives of k then

gives k0 = (k1 + k2 ↵g + · · · )�(↵g) and similarly for k00, and using these in (2.6) then leads to

the expression

U ' U1 ↵
2
g � U2 ↵

3
g + U3 ↵

4
g + · · · , (2.11)

1More precisely masses actually develop a dependence on P rather than just ⌧ because they typically

acquire their leading dependence on ⌧ through powers of the Weyl rescaling factor e�K/3 = P = ⌧ � k + · · · .
This makes k a function of lnP rather than ln ⌧ in the discussions to follow; a distinction that often does not

matter, but plays an important role when discussing the ⌘ problem for the inflationary scenarios of §3.4.
2Notice that it is only ratios of physical masses that matter here and not ratios of masses to the RG running

parameter µ. This is because any ⌧ -dependence associated with µ ultimately cancels from physical observables

for the same reason that all µ-dependence also cancels.
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acquire their leading dependence on ⌧ through powers of the Weyl rescaling factor e�K/3 = P = ⌧ � k + · · · .
This makes k a function of lnP rather than ln ⌧ in the discussions to follow; a distinction that often does not

matter, but plays an important role when discussing the ⌘ problem for the inflationary scenarios of §3.4.
2Notice that it is only ratios of physical masses that matter here and not ratios of masses to the RG running

parameter µ. This is because any ⌧ -dependence associated with µ ultimately cancels from physical observables

for the same reason that all µ-dependence also cancels.
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parameter µ. This is because any ⌧ -dependence associated with µ ultimately cancels from physical observables

for the same reason that all µ-dependence also cancels.

– 9 –

k constant: extended no-scale 

But in principle there should be logarithmic dependence at each order
Albrecht et al 2001, Aghababaie et al 2002 
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Ansatz for the Kähler potential. Conditions:

• It is at most quadratic in the fibre coordinates ⇣.

• It reduces to the sum of separate Kähler potentials for the base and

the fibre in the limit of trivial fibration. With the base having volume

V3 and the fibre with volume v0.

• Scale out the dimensionality of the coordinates by their relevant length

scale v
1
2
0 for the fibre coordinates and V

1
6
3 for the base coordinates.

• Keep the dimensionality two of K by scaling an overall factor of v
1
2
0 V

1
6
3

that will be carried to the metric and guarantee that the overall volume

of the manifold is given by v0V3

1

can forbid4 its appearance in the superpotential W . The leading expression for the Kähler

potential for T is well known to be of the no-scale type

K(T, T ) = �2 lnV = �3 ln ⌧ , (2.19)

as can be derived either from explicit dimensional reduction or using the transformation

properties of the 4D action under the approximate accidental scaling symmetries (2.17) and

(2.18).

As discussed earlier, the conditionWT = 0 together with the no-scale identityK
AB

K
A
KB =

3 satisfied by the Kähler potential (2.19) ensures the scalar potential (2.3) is independent of

⌧ and this precisely reproduces the microscopic statement that Kähler moduli are not fixed in

the underlying flux construction at leading order in string coupling and ↵
0. Kähler modulus

stabilization proceeds because higher-order corrections lift this flatness and so can stabilize

fields like T . At present the main approaches to modulus stabilization drive this stabilization

by introducing a T -dependent contribution to the superpotential, which can arise nonpertur-

batively in 1/⌧ through contributions of the form �W = Wnp / e
�⇠ T for some ⇠. Introducing

T -dependence to W lifts the flatness of the no-scale potential, and can be consistent with the

underlying 1/⌧ expansion either if w0 happens to be extremely small [5] or by considering

multiple Kähler moduli, ⌧v and ⌧s and having ⌧v ⇠ e
⇠⌧s so that powers of 1/⌧v can compete

with �W / e
�⇠ Ts [6, 7].

We instead here do not introduce a T -dependence to W at all, and considering only per-

turbative corrections to K (that would in any case normally dominate over non-perturbative

e↵ects). Denoting s = ReS = e
��, in general [2] perturbative corrections to K in powers of

1/s and 1/⌧ can be written as

e
�K/3 = s

1/3
⌧

X

nmr

Anmr

✓
1

s

◆n ⇣
s

⌧

⌘(m+r)/2
, (2.20)

with n counting string loops and the ↵
0 expansion receives contributions from r powers of

extra-dimensional curvature and m+1 powers of 3-form flux G(3). The coe�cients Anmr here

are to be regarded as functions of all other moduli5, but the powers of s and ⌧ associated

with the string-loop and ↵
0 expansions are explicit. Tracking only the volume dependence

then shows that the Kähler potential can be written as the following expansion in powers of

1/⌧

K(T, T ) = �3 lnP, with P(⌧) = ⌧


1� k

⌧
+

h

⌧3/2
+O

✓
1

⌧2

◆�
. (2.21)

4Whether it does or not depends on whether the corresponding symmetry has an anomaly. If so W can

depend exponentially on T . T -dependent corrections to W that are perturbative in 1/T are forbidden by the

supersymmetric non-renormalization theorems [40, 35, 36].
5A crucial di↵erence in our approach is to consider that the coe�cients Anmr can have a ln ⌧ dependence.
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Logarithmic Corrections and the RG

volume (in string units), V / ⌧
3/2. In a string context the reliance of semiclassical arguments

on large ⌧ expresses how semiclassical supergravities provide reliable EFTs for string vacua

only for geometries that are much larger than the string scale.

Crucially, although powers of ⌧ are explicit in (2.1), in general quantum e↵ects complicate

the scaling properties of subdominant terms in the lagrangian. We return below to why this is

so, but just record now that it allows the functions k, h to be rational functions of logarithms

of ⌧ : k = k(ln ⌧), h = h(ln ⌧) etc..

The lagrangian obtained with these choices for K and W have the familiar supergravity

form, with the Einstein-frame kinetic term for the bosons given (in Planck units) by

� Lkinp
�g

=
1

2
R+K

TT
@µT @

µT ' 1

2
R+

✓
3

⌧2
+ · · ·

◆
@µT @

µT , (2.2)

where (as usual) R denotes the Ricci scalar built from gµ⌫ and subscripts on functions like

K and k denote di↵erentiation with respect to the fields: e.g. K
TT

= @T@T
K.

The scalar potential is similarly given by

V = e
K
h
K

TT
DTWDTW � 3|W |2

i
. (2.3)

where K
TT = 1/K

TT
and

DTW = WT +KTW '
✓
�3

⌧
+ · · ·

◆
w0 . (2.4)

The last equality uses (2.1) for K. The leading parts of the scalar potential then are

V ' �3 k
TT

P2
|w0|2 + · · · = 3 (k0 � k

00)

⌧4
|w0|2 +O(⌧�5) , (2.5)

where P := e
�K/3 = ⌧ � k + · · · and primes denote di↵erentiation with respect to x = ln ⌧ .

Notice that expression (2.5) vanishes whenever k is independent of T , as it must do on general

grounds because (2.1) becomes a no-scale model [38] in the limit that h (and higher terms)

vanish and k is T -independent. For later purposes recall also that k
TT

can have either sign

since it does not control the sign of the kinetic energy for T in (2.2). Contributions involving

h and other subdominant terms in (2.1) first arise at order O(⌧�5).

2.2 Controlled perturbative stabilization

Eq. (2.5) reveals that the leading contribution to the potential for large ⌧ has the form

V (⌧) ' U(ln ⌧)

⌧4
, (2.6)

with U(ln ⌧) = �3⌧2k
TT

|w0|2 = 3(k0�k
00)|w0|2. The minima of (2.6) depend on the functional

form of U and so requires more information about how k acquires its dependence on ln ⌧ .
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To this end, following the ideas of [10] and [11], we imagine that k acquires its depen-

dence on ln ⌧ through the running of some dimensionless coupling ↵g, due to a perturbative

expansion of the form

k ' k0 + k1 ↵g +
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2
↵
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g + · · · (2.7)

with a dimensionless coupling ↵g ⌧ 1. In general the running of a dimensionless coupling like

↵g introduces logarithms of mass ratios, such as when its renormalization-group evolution is

integrated to give
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=

1
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� b1 ln
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m1
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◆
. (2.8)

The main observation is that this can become a dependence1 on ln ⌧ if there are multiple

fields coupling to this interaction whose masses2 depend di↵erently on ⌧ .

Such interactions do plausibly arise in string compactifications. For instance in IIB

compactifications particles localized on D3 and D7 branes have masses that depend di↵erently

on the volume modulus and when such branes intersect they can both couple to light open-

string 4D gauge fields (whose gauge coupling could be the ↵g considered here).

In such a situation (2.7) predicts a logarithmic ⌧ dependence for k that emerges through

the ⌧ -dependence of ↵g, which in turn can be expressed through a renormalization-group

evolution like

⌧
d↵g

d⌧
= �(↵g) = b1↵

2
g + b2 ↵

3
g + · · · . (2.9)

For ↵g small enough to neglect all but the leading term in � this has solution

↵g(⌧) =
↵g0

1� b1 ↵g0 ln ⌧
, (2.10)

for some integration constant ↵g0 = ↵g(⌧ = 1). For the present purposes what is important

about the ln ⌧ dependence given in (2.10) is that its derivation neglects only additional powers

of ↵g in (2.9). Consequently for large ⌧ it remains valid to all orders in ↵g ln ⌧ while dropping

contributions of order ↵
2
g ln ⌧ . It is this renormalization-group resummation that ultimately

allows us to trust minima of the potential that occur in the regime ln ⌧ ⇠ 1/↵g.

Now comes the main point. Using (2.7) and (2.9) to evaluate the T -derivatives of k then

gives k0 = (k1 + k2 ↵g + · · · )�(↵g) and similarly for k00, and using these in (2.6) then leads to

the expression

U ' U1 ↵
2
g � U2 ↵

3
g + U3 ↵

4
g + · · · , (2.11)

1More precisely masses actually develop a dependence on P rather than just ⌧ because they typically

acquire their leading dependence on ⌧ through powers of the Weyl rescaling factor e�K/3 = P = ⌧ � k + · · · .
This makes k a function of lnP rather than ln ⌧ in the discussions to follow; a distinction that often does not

matter, but plays an important role when discussing the ⌘ problem for the inflationary scenarios of §3.4.
2Notice that it is only ratios of physical masses that matter here and not ratios of masses to the RG running

parameter µ. This is because any ⌧ -dependence associated with µ ultimately cancels from physical observables

for the same reason that all µ-dependence also cancels.
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Figure 1: A plot of V vs ⌧ for the scalar potential V = U(ln ⌧)/⌧4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima ⌧ = ⌧0 of this potential generically occur in the regime where ↵(⌧0) ⇠
O(1). But if stabilization of other moduli make ↵g0 small, then inspection of (2.10) shows

that ⌧0 must be very large because ↵g0 ln ⌧0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� ⇠
����
U2

U3

���� ⇠ O(✏) (2.12)

for some smallish ✏ ⌧ 1. Such a hierarchy allows solutions to @V/@⌧ |⌧0 = 0 for ↵0 ⇠ O(✏)

and so

b1 ln ⌧0 = ↵
�1
g0 � ✏

�1 (2.13)

can easily be order 1/✏ if ✏ ⌧ ↵g0 and b1 < 0. For ✏ <⇠ 1/10 the value predicted for ⌧0 can be

enormous ⌧0 ⇠ e
1/✏, justifying the validity of the 1/⌧ expansion ex post facto. As is easy to

check, when 9U2
2 > 32U1U3 the potential has a local minimum at ⌧0 that is separated from

the runaway to ⌧ ! 1 by a local maximum at ⌧1 > ⌧0 (see Fig. 1).

The value of the potential at this minimum is positive if U
2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(⌧0) ⇠ O(✏4) when

U3 ⇠ O(1), it happens that the condition V
0(⌧0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(⌧0) ⇠ O(✏5). As a result both V (⌧0)

and ⌧
2(@2

V/@⌧
2)
��
⌧0

are O(✏5|w0|2/⌧40 ), and this can be extremely small given that ⌧0 can be
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Dine-Seiberg argument implies exponentially large 𝝉 !
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Ansatz for the Kähler potential. Conditions:

• It is at most quadratic in the fibre coordinates ⇣.

• It reduces to the sum of separate Kähler potentials for the base and

the fibre in the limit of trivial fibration. With the base having volume

V3 and the fibre with volume v0.

1



where  and Z are ⌧ -independent21 but K acquires a dependence on ln ⌧ through the running

of some UV-sector dimensionless coupling ↵g. In this case the potential (2.17) becomes

VF ' +
3|w0|2
⌧4


K0 �K00

1 + 22/Z

�
=:

C
⌧4

⇣
K0 �K00

⌘
, (3.10)

where C := 3|w0|2/(1 + 22/Z) and primes denote di↵erentiation with respect to ln ⌧ .

To evaluate these derivatives write the perturbative expansion of K in the form

K ' K0 +K1

⇣
↵g

4⇡

⌘
+

K2

2

⇣
↵g

4⇡

⌘2
+ · · · (3.11)

with

⌧
d

d⌧

⇣
↵g

4⇡

⌘
=: �(↵g) = b1

⇣
↵g

4⇡

⌘2
+ b2

⇣
↵g

4⇡

⌘3
+ · · · . (3.12)

The solution for the ⌧ -dependence of ↵g to leading order in ↵g becomes

4⇡

↵g
= b0 � b1 ln ⌧ , (3.13)

for some integration constant b0. This solution neglects ↵g ⌧ 1 while working to all orders

in ↵g ln ⌧ , which is valuable if minimization occurs in the regime ln ⌧ ⇠ 1/↵g (as it will). For

example, with the couplings normalized as above the constant b1 appropriate to N charged

fermions would be

b1 =
4N

3
. (3.14)

Using (3.11) and (3.12) to evaluate the derivatives in (3.10) gives

VF ' C
⌧4

h
K1b1

⇣
↵g

4⇡

⌘2
+
⇣
K1b2 +K2b1 � 2K1b

2
1

⌘⇣
↵g

4⇡

⌘3
(3.15)

+
⇣
K1b3 +K2b2 +K3b1 � 5K1b1b2 � 3K2b

2
1

⌘⇣
↵g

4⇡

⌘4
+ · · ·

i
.

This potential can have a minimum at ⌧ = ⌧0 for ↵0 = ↵g(⌧0) consistent with using pertur-

bative methods provided there is a mild hierarchy amongst the coe�cients Ki. In particular,

if |K2/K3| ⇠ O(✏) and |K1/K3| ⇠ O(✏2) for some smallish ✏ ⇠ 1/60 ⌧ 1, then

@VF

@⌧
=

C
⌧5

⇣
�4K0 + 5K00 �K000

⌘
' �4b1


K1

⇣
↵0

4⇡

⌘2
+K2

⇣
↵0

4⇡

⌘3
+K3

⇣
↵0

4⇡

⌘4
�
, (3.16)

where the last equality drops the coe�cients of ↵n
0 that are subleading in ✏.

The solutions to V
0
F
= 0 at leading order in ✏ therefore are

↵0± ' 1

2

2

4�K2

K3
±

s✓
K2

K3

◆2

� 4K1

K3

3

5 ⇠ O(✏) . (3.17)

21This assumption is just to simplify expressions, the general case with both  and Z depending on ln ⌧

works in the same way as below but with more cumbersome expressions.
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This potential can have a minimum at ⌧ = ⌧0 for ↵0 = ↵g(⌧0) consistent with using pertur-

bative methods provided there is a mild hierarchy amongst the coe�cients Ki. In particular,
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21This assumption is just to simplify expressions, the general case with both  and Z depending on ln ⌧

works in the same way as below but with more cumbersome expressions.
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Concrete Example:

T

V

Figure 1: A plot of V vs ⌧ for the scalar potential V = U(ln ⌧)/⌧4, revealing a de Sitter or anti-de
Sitter minimum separated from a runaway by a local maximum. The plots are obtained using the
representative values k1/k3 = 0.01 and k2/k3 = �0.133 (arbitrary scale). The main text describes the
precise parameter range required to get de Sitter rather than anti-de Sitter or a runaway.

where U1 = 3k1b1|w0|2 and so on. Furthermore, the Dine-Seiberg argument leads one to

expect that any minima ⌧ = ⌧0 of this potential generically occur in the regime where ↵(⌧0) ⇠
O(1). But if stabilization of other moduli make ↵g0 small, then inspection of (2.10) shows

that ⌧0 must be very large because ↵g0 ln ⌧0 ' O(1).

This general argument can be made explicit purely using perturbative methods if we

arrange that the coe�cients U1, U2 and U3 appearing in the potential (2.6) with U given by

(2.11) are all positive and satisfy the mild hierarchy

����
U1

U2

���� ⇠
����
U2

U3

���� ⇠ O(✏) (2.12)

for some smallish ✏ ⌧ 1. Such a hierarchy allows solutions to @V/@⌧ |⌧0 = 0 for ↵0 ⇠ O(✏)

and so

b1 ln ⌧0 = ↵
�1
g0 � ✏

�1 (2.13)

can easily be order 1/✏ if ✏ ⌧ ↵g0 and b1 < 0. For ✏ <⇠ 1/10 the value predicted for ⌧0 can be

enormous ⌧0 ⇠ e
1/✏, justifying the validity of the 1/⌧ expansion ex post facto. As is easy to

check, when 9U2
2 > 32U1U3 the potential has a local minimum at ⌧0 that is separated from

the runaway to ⌧ ! 1 by a local maximum at ⌧1 > ⌧0 (see Fig. 1).

The value of the potential at this minimum is positive if U
2
2 < 4U1U3 and negative

otherwise. Although (2.11) and (2.12) might naively lead one to expect U(⌧0) ⇠ O(✏4) when

U3 ⇠ O(1), it happens that the condition V
0(⌧0) = 0 ensures that this leading contribution

cancels, making the result at the minimum instead U(⌧0) ⇠ O(✏5). As a result both V (⌧0)

and ⌧
2(@2

V/@⌧
2)
��
⌧0

are O(✏5|w0|2/⌧40 ), and this can be extremely small given that ⌧0 can be
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AdS and dS minima 

Figure 2: A sketch of the potential U(↵) vs ↵ where VF = U(↵)/⌧4. The plots are obtained from
(3.15) using the representative values K1/K3 = 0.01 and K2/K3 = �0.133 (arbitrary scale).

For K1 and K3 positive and K2 negative with K2
2 > K1K3 there are two real roots for which

both ↵0 and VF can be positive, with the minimum (maximum) being the root ↵0+ (or ↵0�).

Because ↵0 ' O(✏) eq. (3.13) implies ln ⌧0 ⇠ 1/↵0 ⇠ O(1/✏) at the minimum, provided the

constants b0 and b1 are order unity. In principle the values of ↵0 and ⌧0 can be adjusted

independently by choosing b1 appropriately (such as by choosing N in (3.14)).

The values of the potential and its second derivative

@
2
VF

@⌧2
' C

⌧6

⇣
20K0 � 29K00 + 10K000 �K0000

⌘
. (3.18)

at these stationary points also turn out to be proportional to
h
K1(↵0/4⇡)2 + K2(↵0/4⇡)3 +

K3(↵0/4⇡)4
i
at leading order in ✏, showing that both VF and @

2
VF/@⌧

2 are of order ✏
5
/⌧

4
0

when evaluated at the minimum, rather than the naive ✏4/⌧40 . All of these features are visible

in the illustrative plot shown in Fig. 2, which uses a parameter set for which ✏ ⇠ 0.1 to plot

U(↵) against ↵, where VF = U(↵)/⌧4. This is the origin of the factors of ✏ seen in (2.19),

which in turn lead to the numerical estimates of (2.24) in §2.1.4.

3.2.2 An alternative stabilization scenario

The dependence of k on ln ⌧ described in the previous section leads to a potential whose

minimum can easily occur at the extremely large values of ⌧ that appear in the benchmark

values (2.24). For these choices the potential can be very small at its minimum but even

so it is only as small as the observed Dark Energy density for extremely tiny values of the

parameter ✏ ⇠ 10�5. But if ⌧ ⇠ 1030 and ✏ ⇠ 10�5 then the leading ✏
5
w

2
0/⌧

4 contribution to

the potential is so small that the next-to-leading w
2
0/⌧

5 contribution becomes competitive.

This observation suggests exploring situations where this naively subdominant 1/⌧5 con-

tribution might actually dominate. This is actually what happens if k does not depend on
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SUSY Breaking

In this case the main constraint on the present-day value of ⌧ actually comes from demanding

the field ⌧ to be heavy enough to avoid the cosmological-modulus problem. This problem

is a general constraint on gravitationally coupled relics and requires ⌧ to be heavy enough

to decay before nucleosynthesis, so as not to destroy its successes, which for gravitational-

strength decays requires m⌧ >⇠ 30 TeV [49].

Re-introducing factors of Mp, the mass of ⌧ and of the gravitino are related by

m⌧ =

✓
⌧
2

M2
p

@
2
V

@⌧2

◆1/2

⇠ ✏
5/2|w0|
⌧2M2

p
⇠
✏
5/2

m3/2

⌧1/2
where m3/2 ⇠

|w0|
⌧3/2M2

p

. (2.23)

In these expressions we take ✏ ⇠ O(1/10) since ⌧0 ⇠ e
1/✏, but even once this is done the

implications for ⌧0 of the condition m⌧ (⌧0) >⇠ 30 TeV depends on the value of |w0|. We

choose two representative benchmarks: |w0| ⇠ M
3
p (as is most commonly found in string

compactifications) or |w0| ⇠ M
3
p ⌧

1/2
0 (which is the upper limit on what is possible for a 4D

supergravity EFT, since for larger w0 the gravitino mass becomes larger than the Kaluza-Klein

scale given in (2.22) [50, 11]). Choosing m⌧ ⇠ 30 TeV for each of these cases implies

⌧0 ⇠ 106 , m3/2 ⇠ 109 GeV , MKK ⇠ 1012 GeV , Ms ⇠ 1014 GeV if |w0| ⇠ M
3
p

⌧0 ⇠ 108 , m3/2 ⇠ MKK ⇠ 1010 GeV , Ms ⇠ 1012 GeV if |w0| ⇠ M
3
p ⌧

1/2
0 .

Given a value for ⌧0, the size of soft supersymmetry-breaking terms, superpartner masses

and trilinear couplings for any Standard Model like sector can also be estimated, under the

assumption that their dominant source of supersymmetry breaking comes from the T auxiliary

field, although the result depends somewhat on the particular microscopic realization of the

Standard Model and hidden sectors. For instance, suppose a Standard Model multiplet

 
i appears in the quantity k( , ) of eq. (2.21). This would arise, for example, for states

sequestered in local D3 or D7 branes and predicts soft supersymmetry-breaking masses in a

manner similar, although slightly di↵erent dependence, to what is found for the large modulus

in LVS (see for instance [56]):

m
2
 = m

2
3/2 � F

i
F

j
@i@j lnZ which implies m ⇠ w0

⌧2
⇠

m3/2

⌧1/2
. (2.24)

Here Z ⇠ @i|̄K ⇠ �ki|̄/⌧ and the F -term for T is given by

F
T = e

K/2
K

TT
KTW ⇠ w0

⌧1/2
+O(⌧�3/2) . (2.25)

For gaugino masses in this type of scenario it is instead the F -term of the dilaton that

plays the key role. This is true (as in LVS) even though to leading order the dilaton S does

not break supersymmetry F
S / DSW = 0, since to next order in the 1/⌧ expansion we have

F
S ' e

K/2
K

SS
KSw0 ⇠ w0/⌧

5/2. This gives gaugino masses of order

MG =
F

i
@if

Ref
⇠ w0

⌧5/2
⇠

m3/2

⌧
. (2.26)
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To avoid cosmological moduli problem

Soft terms

Split SUSY
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Revisiting Brane Anti-brane Inflation



Recall Brane-Antibrane Inflation

• Interactions calculable

• End by tachyon condensation

• But no slow roll

• No moduli stabilisation

After completing this work, we became aware of the papers [13], in which related

issues are addressed.

2. Brief Review of D3/D3 Inflation

In brane-antibrane inflation one studies the relative motion of a brane and an antibrane

which are initially separated by a distance r on the compactification manifold M . One

should assume r ≫ ls, so that the force is well approximated by the Coulomb attraction

due to gravity and RR fields. Then the potential takes the form

V (r) = 2T3

(

1 − 1

2π3

T3

M8
10,P lr

4

)

. (2.1)

where M10,P l is the ten-dimensional Planck scale, defined by 8πG10,N = M−8
10,P l, and T3

is the tension of a D3-brane. In terms of a canonically normalized scalar field φ, one can

rewrite this as

V (φ) = 2T3

(

1 − 1

2π3

T 3
3

M8
10,P lφ

4

)

. (2.2)

It was suggested in [11] that for large fields (large r), one may obtain inflation from this

potential.

A basic (and well known [4]) problem with this scenario is the following. The standard

inflationary slow-roll parameters ϵ and η are defined via

ϵ ≡ M2
Pl

2
(
V ′

V
)2 (2.3)

η ≡ M2
Pl

V ′′

V
. (2.4)

One generally wants ϵ, η ≪ 1 to get slow-roll inflation with sufficient e-foldings. Is this

possible in the model (2.2)? The four-dimensional Planck mass appearing in (2.4) is

M2
Pl = M8

10,P lL
6 where L6 is the volume of M. This implies that η is

η = −10

π3
(L/r)6 ∼ −0.3(L/r)6 (2.5)

Hence, η ≪ 1 is possible only for r > L – but two branes cannot be separated by a distance

greater than L in a manifold M of size L!
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much known about scalar potentials from string theory. In most cases under control

the potentials are just zero and the lifting by nonperturbative effects usually leads
to runaway potentials or in general potentials which are too steep to inflate. It is

then an open question as how to derive inflating potentials from string theory.
The interactions between D-branes offer a

D−Brane
D−Brane

Y

Figure 7: Cylinder interaction be-

tween two branes. It could be in two

dual ways, as a tree-level exchange

of closed strings, valid at large dis-

tances or as a one-loop exchange of

open strings, dominant at small dis-

tances.

new avenue to investigate these issues and has

led to the first concrete examples of scalar field
inflation from string theory, providing also a nice

geometrical and stringy picture of the inflation-
ary process, as well as the ending of inflation.
Furthermore, these ideas lead to interesting new

cosmological scenarios for which inflation is only
a part.

In 1998, Dvali and Tye came up with a very
interesting proposal to derive inflation from D-

branes. They argued that two D-branes could
generate inflation as follows. If both branes are
BPS, meaning that they preserve part of the

original supersymmetry of the system, and sat-
isfy a Bogomolnyi-Prasad-Sommerfeld bound, the

net force between them vanishes. The reason
for this is that both have a positive tension and,

therefore, are naturally attracted to each other
by gravitational interactions. Also the exchange of the dilaton field naturally leads
to an attractive interaction. However, both branes are also charged under antisym-

metric Ramond-Ramond fields for which the interaction is repulsive, given that both
branes have the same charge. Therefore the combined action of the three interactions

cancels exactly if the branes are BPS.
This calculation can be done explicitly, the interaction amplitude corresponds to

the exchange of closed strings between the two branes. The amplitude can be com-

puted by calculating the one-loop open string amplitude corresponding to a cylinder
[103]:

A = 2

∫

dt

2t
Tre−tH = 2Tp

∫

dt

2t

(

8π2α′t
)−(p+1)/2

e
− Y 2t

2φ2α′ [ZNS − ZR] ≡ ANS − AR

(4.15)

With

ZNS =
−16

∏

n (1 + q2n)
8
+ q−1

∏

n (1 + q2n−1)
8

∏

n (1− q2n)8

ZR =
q−1

∏

n (1− q2n−1)
8

∏

n (1− q2n)8
(4.16)
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Notice that as usual, once inflation is generated it dominates. Furthermore we may

imagine the brane gas to originate from just one pair of a D9/D̄9 branes, acting
as parent branes generating the cascade of daughter brane/antibrane systems. It

remains to ask for the origin of the D9/D̄9 pair to start with, probably as some sort
of quantum fluctuation, although this is not clear.

The cascade scenario also allows for some
D−Brane D−Brane

Anti−

Y

Figure 13: An open string state

becomes tachyonic at a critical inter

brane separation.

speculations about the dimensionality of space-
time [29]. Starting in type IIB strings we know

that branes of odd dimensionality (9, 7, 5, 3, 1)
appear, therefore we can have D9 brane/antibrane
annihilating immediately, also D7 branes anni-

hilate their antibranes very easily because of
their large dimensionality, as well as D5 branes.

However D3 branes will have a harder time to
meet their antibranes because of the difference

in dimensionality. Remembering the argument
of Brandenberger-Vafa for the dimensionality of
spacetime argued that the world-sheets of two

strings can meet in 4-dimensions but not in larger
ones. This can be generalised to p branes in D

dimensions for which the critical dimension is:

Dcritical = 2p+ 2. (4.32)

Therefore we may say that D branes with p = 3 can meet in dimensions smaller
or equal than 8 but miss each other in higher dimensions, whereas p = 5 branes

meet in D < 12. This makes a rough argument why D3-brane worlds may survive
annihilation in 10 dimensions and be preferred over higher dimensional ones. We

may actually imagine a scenario where branes of all types are initially present and all
dimensions are compact and small. The large dimension branes annihilate instantly,
leading to a population of branes that include 3-branes and lower. The windings of

these branes keep any dimensions from growing. Then the BV mechanism starts to
act, making four dimensions large and six small, with no windings about the large

spatial directions. After this we have the particular collision which causes inflation
of the large dimensions. It would be very interesting to quantify this statement. For

a further discussion and calculations on this regard see [92, 93].
We may still have to worry about D branes of dimensions smaller than 3. We

know that domain walls (p = 2) and monopoles (p = 0) can be the source of serious

cosmological problems, since they over-close the universe and therefore should not
survive after inflation. Cosmic strings on the other hand are not ruled out (they have

been ruled out as the main source of the density perturbations, but they could still
exist and contribute at a minor scale [94]). Fortunately this scenario does not give rise
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Recall: Warped D3-D3 Inflation

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold

3
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and so requires @2
wX/@�

2 to be much smaller than order �2.

These conditions cannot be satisfied for the choice (3.19) for simple choices of extra-

dimensional geometry because finite extra-dimensional size constrains the maximum value of

|�| relative to gB [13]. The same is not true for branes moving within warped throats because

in this case warping can suppress the value of gB relative to the maximum values achievable

for |�| [18].

3.4 Warped brane-antibrane inflation reloaded

Brane-antibrane inflation was the first attempt to derive inflation from a string theory con-

struction within a framework in which calculations could be performed. Here the inflaton

field is the separation between the brane and the antibrane and the corresponding potential

was the sum of two terms, the brane tension and the Coulomb interaction. The picture was

very appealing but it immediately faced two main problems: in order to satisfy the slow-roll

conditions, the separation of the branes had to be larger than the overall size of the manifold

and there was an implicit assumption that the closed string moduli, such as the dilaton and

volume moduli were fixed by some other means. This second question was reconsidered after

the KKLT moduli stabilisation scenario came up.

Let us briefly recall the main ideas. Fluxes in IIB compactifications back react on the

metric in such a way that the resulting compactification is a conformal Calabi-Yau threefold

with metric of the form:
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acting as a redshift factor that control the scales es-

pecially in the highly warped region for which e
�4A � V2/3. In the conformal Calabi-Yau

it essentially measures the size of a three-cycle with the shape of a long throat as in the

Klebanov-Strassler solution.

Contrary to D3 branes which, from their BPS nature, are free to move within the Calabi-

Yau space, an anti D3 brane will energetically be forced to stay at the tip of the throat for

which the warp factor takes a value:

e
4A0 := e

�4⇢ = e
� 8⇡K

3gsM (3.25)
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where K and M are the integer fluxes that fix the complex structure moduli determining the

size of the corresponding three-cycle and its dual. Depedning on the values of K and M the

warp factor can be very naturally small providing a natural source of hierarchies within the

theory.

The tension of the anti D3 brane gives rise to a positive contribution to the scalar potential

of the form:

2T3

Z
d
4
x
p

�g4 = 2T3
V2/3

e4⇢ + V2/3
⇠ e

�4⇢

V4/3
for e

4⇢ � V2/3 (3.26)

where T3 = 1/(8⇡3
gs↵

02) = (2⇡)11g3sM
4
p /(4V2) is the brane tension. This is precisely the term

used in KKLT (with the volume correction found by KKLMMT) to uplift the AdS minimum

to dS. The exponential dependence of the warp factor is used to tune the uplifting in order

to get de Sitter rather than AdS or the more generic runaway. In order to have a reliable

low-energy e↵ective field theory the warping is constrained to e
⇢ ⌧ V2/3.

This brane tension term was also key in the treatment of D3 brane antibrane inflation

as discussed by KKLMMT. Added to the Coulomb interaction among the branes gives a

compelling inflation potential.

V = 2T3e
�4⇢

✓
1� 27

64⇡2

2T3e
�4⇢

�4

◆
:= ⌦

✓
1� �⌦

�4

◆
(3.27)

where � is the (dimension one) canonically normalised field determining the brane separation

r: � =
p
T3r and

⌦ =
↵e

�4⇢

V4/3
M

4
p , 2↵ = (2⇡)11g3s , � =

27

64⇡2
(3.28)

Without the warp factor this potential is not flat enough to give rise to inflation as

noted in [?] since it would require brane separation to be larger than the typical linear size

of the extra dimensions. However the presence of the warp factor in both the constant and

interaction terms allows to have a potential as small as possible assuming that the overall

volume has been fixed. However the mechanism to fix the volume (appearing from the volume

dependence once we express T3 in terms of the Planck scale) typically induce a mass term

to the field � that contributes to the value of the slow-roll parameter a contribution of order

one. This is the supergravity ⌘ problem.

More concretely, for the case of one Kähler modulus T = ⌧+ia

2 , the overall volume is of

the form V2/3 = T + T � ��. If the mechanism for moduli stabilisation is such that it fixes

T + T and not the overall volume as in KKLT in which T is fixed by the non-perturbative

superpotential Wnp(T ), then while � moves the volume also changes to keep T fixed and

the e
K term in the scalar potential depending on the volume is expanded in powers of ��

providing an order one contribution to ⌘.

V / V�n = ⌧
�3n/2

✓
1 +

3n

2

��

⌧
+ · · ·

◆
(3.29)

which gives rise to an order one contribution to ⌘ = V''/V with ' the canonically normalised

field. Therefore, once volume stabilisation is included even the warped scalar potential above
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will have an extra contribution to ⌘ that ruins the flatness of the potential and inflation

unless some extra contributions to ⌘ are found that could be tuned to cancel the order one

contribution to ⌘. This is what was done through very explicit string theory calculations

to achieve the fine tuning from the matter contribution to the superpotential. Even though

inflation is achievable in this way, it needed a very particular fine tuning and essentially the

Coulomb potential above was replaced by a inflection point inflation [?].

However, as already noted in [?], if the stabilisation mechanism is perturbative in an

expansion in the volume modulus (and not just ⌧) then the above argument does not hold

and we can actually use the warped scalar potential above to get inflation. This makes a big

di↵erence since both ✏ and ⌘ will depend on the warp factor and can be made as small as we

want. We should then read the scalar potential for ⌧ with ⌧ = TT � k(�,�) instead of just

⌧ = T + T and while � moves during inflation it is the full ⌧ that is fixed and not just T + T

(so no need to expand around � = 0). This can be seen directly for instance by realising that

at the minimum of ⌧ , V⌧ = 0 implies that the contribution from the ⌧ dependence gives a

vanishing contribution to ✏ and ⌘.

From the scalar potential above we can explicitly compute the slow-roll parameters:

✏ :=
M

2
p

2

✓
V�

V

◆2

' 8�2
✓
⌦Mp

�5

◆2

⌘ := M
2
p

V��

V
' �20�

⌦M2
p

�6
(3.30)

Notice that the slow roll conditions ✏ ⌧ 1 and ⌘ ⌧ 1 are easily satisfied even for values of �

of order one in string units as long as the warp factor in ⌦ is large (small?) enough.

To be more quantitative we may estimate the observable quantities such as the spectral

index ns and tensor-to-scalar ratio r
7:

ns = 1 + 2⌘ � 6✏ r = 16✏ (3.31)

Also, the number of e-foldings:

Ne =
1

Mp

Z
�⇤

�end

d�p
2✏

=
1

24�

�
6
⇤

M2
p⌦

(3.32)

and the amplitude of density perturbations:

�H =
1

⇡
p
75

V
3/2

M3
pV�

' 1

4⇡�
p
75

�
5
⇤

M3
p

p
⌦

(3.33)

In terms of Ne and �H we can constrain the input parameters �⇤, e
�4⇢

,V, gs

�
6
⇤↵

03 =
162Ne

(2⇡)10

 
Ve�4⇢

g
3/2
s

!
,

e
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V2
=
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�

2N5
e

�
3
H (3.34)

7Not to be confused with the coordinate r.
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and determine the slow roll parameters ✏, ⌘

⌘ = � 5

6Ne

, ✏ =
20⇡

9
p
2

�H

N
5/2
e

(3.35)

Therefore the warp factor allows to easily satisfy the slow roll conditions and get the desired

number of e-folds. Also, for Ne ' 60 and �H = 1.9⇥ 10�5 implies ns within the experimental

range and r <⇠ 10�7 which is too small to be observable.

Notice that if the volume V is stabilised perturbatively as we are proposing here, this

scenario avoids the ⌘ problem in a natural way and provides arguably the most natural string

scenario so far.

3.4.1 The Nilpotent Superfield and anti-D3 Branes

One of the interesting properties of the nilpotent superfield is that it captures very e�ciently

the physics of anti D3 branes at the tip of a Calabi-Yau throat as in the Klebanov-Strassler

solution. In this subsection we will show that in the same way that the presence of an

antibrane can be represented in the non-linearly realised supersymmetry by introducing the

nilpotent field X, we can also describe the Coulomb interaction between the brane and the

antibrane and even the tachyonic end of brane antibrane inflation in the supersymmetric

action.

The antibrane from the nilpotent superfield

First let us recall how the nilpotent superfield reproduces the presence of the anti D3 brane

at the tip of the warped throat. For this take simply both wX and K are constants. W =

W0 + wXX. Then its contribution to the scalar potential is:

VX =
|wX |2
⌧2

(3.36)

which for wX / e
�2⇢ it reproduces the KKLT expression for the anti D3 brane tension8

It is worth pointing out that the ⌧ dependence corresponds exactly to the KKLMMT

expression that includes the e↵ects of warping rather than the original KKLT expression that

did not include warping. Somehow the warping information is already encoded within the

superfield X. Furthermore, the fact the X has not independent scalar degree of freedom fits

with the fact that the anti D3 brane is stuck at the tip of the warped throat.

Superpotential for the Coulomb potential

Following our discussion for the relaxon field, it is natural to associate a string theory realisa-

tion for the relaxon in terms of the separation between the anti D3 brane and a bulk D3 brane

that is attracted to it. Since we know that the interaction between both is of the Coulomb

8The origin of the warp factor e�4⇢ can be traced as the VEV of the throat complex structure modulus

Y with an schematic contribution to the superpotential of the form W (Y ) = Y (a log Y + b) + Y X with a, b

integer flux depending constants.. Solving for Y gives rise to the warp factor multiplying X.
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eta problem!

Challenge: Find a W(𝚽) that can implement the fine tuning: 
inflection point inflation

Baumann et al 2007-2009 

Figure 2: The Coulomb potential from the superpotential wX(�). Since V / |wX |2 this potential
reproduces the Coulomb interaction for large values of the brane separation � but at smaller distances
the interaction potential has a minimum and becomes repulsive. At large field values, and due to the
large amount of warping the potential is flat enough to give rise to inflation in a natural way. The
minimum of the potential lies outside the domain of validity of the EFT and only for large values of
� is this potential under control.

�. So once ⌧ is fixed by adding a holomorphic non-perturbative superpotential Wnp(T ), the

dependence of K on � introduces a potential energy that generates a mass for � because of

the potential’s overall dependence on e
K :

V = e
K bV0 '

bV0

[⌧ � �̄ �+ · · · ]3
'

bV0

⌧3


1 +

3�̄ �

⌧
+ · · ·

�
'

bV0

⌧3

h
1 + '̄ '+ · · ·

i
. (3.41)

It is the superpotential terms within bV0 that contain the small warp factors that allow bV0 to

depend so weakly on � that inflation can be possible. The value of bV0 also fixes the value

of the Hubble scale whenever the universal energy density is dominated by V , since then

H
2
I
' V/M

2
p ' bV0/(⌧3M2

p ). But when this is so eq. (3.41) shows (once the Mp factors are

reinstated) that � inevitably has a mass contribution that is of order m2
� ⇠ bV0/(⌧3M2

p ) ⇠ H
2
I

which therefore contributes a factor of order unity to the second slow-roll parameter ⌘ =

M
2
p V''/V ' m

2
�/H

2
I
. Slow roll is only achieved in the standard construction by including a

large (unwarped) �̄ � contribution into bV0 and tuning this to cancel against the term coming

from e
K . Even though inflation is achievable in this way, it needs a very particular fine tuning

and the Coulomb potential is essentially replaced by a tuned inflection-point inflation [61, 62].

The problem is quite generic because the Kähler potential very generally depends only

on P = ⌧ � k+ · · · but because the superpotential must be a holomorphic function it cannot

depend on P and must only depend on T and � separately. But – as already pointed out in

[24] – this also shows that it is potentially evaded if the modulus-stabilization mechanism can

arise from corrections to K rather than to W , provided these directly stabilize P rather than
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Also: Kallosh-Linde problem

it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ

1

2

3

4

V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height
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seed for an attractor solution. In the third stage, the presence of small initial quantities

of radiation drives the fields to an attractor solution. The attractor solution applies dur-

ing the runaway epoch and dissipates energy. The scaling nature of the attractor solution

avoids overshooting and guides the fields into the global minimum of the potential in which

m3/2 ∼ 1 TeV.2 This scenario is illustrated in Fig. 2.

The justification for the existence of a minimum at very large values of the volume,

far along the runaway direction, is the large volume scenario [2], where the inclusion of α′

corrections into the KKLT framework generates a new minimum of the scalar potential at

exponentially large values of the volume, with hierarchically small values of m3/2.
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Figure 2: An illustration of the scenario put forward in this article. At relatively small vol-
ume, high-scale inflation occurs due to fine-tuned quantum corrections. After inflation the volume
modulus evolves over a long range of many Planck scales, eventually settling in the large volume
minimum with TeV gravitino mass. Although the barrier protecting from decompactification is
very small compared to the initial energies, an attractor solution guides the fields to the minimum
and prevents overshooting.

To illustrate this idea, we start by studying moduli evolution in the following toy model

describing a field Φ with a potential

V = V0

(

(1− ϵΦ3/2) e
−

q

27
2
Φ
+ C e−10Φ/

√
6 +D e−11Φ/

√
6 + δ e−

√
6Φ

)

. (2.1)

The particular form of this potential is motivated by that arising as the effective potential

for the volume modulus in the large volume models. The connection to the large volume

2For a recent discussion in the context of M-theory compactifications of the overshooting problem and

how to avoid it, see [27].
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it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).
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of the barrier leads to the bound (in units Mp = 1)

H ! m3/2
3/2 . (1.2)

For m3/2 ∼ 1 TeV this inequality implies that the Hubble constant during inflation in this

class of models [9, 10] cannot exceed O(1) KeV, which is an extremely strong constraint.

There do exist proposals of low-scale inflationary models, for example the so-called

MSSM inflation, which may occur for H ∼ 10 GeV or even for H ∼ 10 MeV [11]. Ref. [12]

also contains a discussion of models where inflation may occur at extremely low scales, with

an example of a model for whichH ∼ 10−7 eV. In particular, if the inflaton potential energy

at H ∼ 1 KeV could instantly transfer to thermal energy, the corresponding temperature

would be about 106 GeV, which is much greater than the critical temperature of the

phase transition in the standard model. If this instantaneous transition is achievable, the

temperatures would then be sufficiently high for the subsequent generation of a baryon

asymmetry.

One can find models with a very low-scale inflation in the context of the KKLT or

large volume scenarios, since the energy scale is exponentially sensitive to the parameter

a of the nonperturbative superpotential W = W0 + Ae−aT [1]. However, models of this

type are very non-traditional, and their parameters are substantially different from the

parameters of all current existing models of string theory inflation. Furthermore, as the

required value of the slow-roll epsilon parameter is given by ϵ ∼ (Einf/6× 1016GeV)4, low-

scale inflation substantially increases the amount of fine-tuning required in the inflaton

potential. It is important to know whether this tension between high-scale inflation and

TeV supersymmetry is unavoidable or whether it is simply a consequence of the assumptions

used so far in inflationary model-building.

This is not the first time that string theory and supergravity have encountered cosmo-

logical problems associated with the small value of the gravitino mass and of the moduli

fields. The famous gravitino problem and the cosmological moduli problem are haunting

us for more than two decades [13–15]. Now we see that the smallness of the gravitino

mass leads to an additional problem in the context of string cosmology [3,4]. This problem

would disappear if one would consider supersymmetric models with large gravitino mass,

for example [16, 17], or used a solution to the hierarchy problem different to that of TeV

supersymmetry.1

There exist ways to address this problem without increasing the value of the gravitino

mass. For example, one may consider KKLT models with the racetrack superpotential

containing at least two exponents and find parameters such that the supersymmetric min-

imum of the potential, even prior to uplifting, occurs at zero energy density [3], which

would mean m3/2 = 0. By a slight change of parameters in this class of models, which are

sometimes called KL models, one can get a gravitino mass that is nonzero but still much

smaller than the height of the barrier, removing the constraint H ! m3/2. In particular,

1For other problems with high values of the Hubble constant in string inflation see [18].
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Recall: Nonlinear SUSY and KKLT

1 Introduction

It is well known that the presence of anti-branes in otherwise supersymmetric string configurations

breaks supersymmetry. Describing this e↵ect in a properly defined e↵ective field theory is an interesting

challenge. In particular, the KKLT scenario of de Sitter moduli stabilisation [1,2] relies on the presence

of at least one anti-D3-brane (D3) to lift the supersymmetric AdS minimum and allow the possibility

of dS string vacua. The uplift is due to the positive energy provided by the tension of the D3 brane

located at the tip of a warped throat.

Even though it is generally agreed that the presence of an antibrane breaks supersymmetry spon-

taneously, see for example [3], a manifestly supersymmetric action describing this e↵ect was missing

until recently. The corresponding action of the D3 was presented recently in [4] starting from a single

-symmetric brane in the supersymmetric background with fluxes. Using the consistent supersym-

metric orientifold condition for the fields on the brane one finds that the vectors and scalars are cut

o↵ in this procedure. It corresponds to placing the D3 on top of an O3-plane, and the surviving part

of the brane action coincides with the Volkov-Akulov (VA) action [5]. This action has a non-linearly

realized supersymmetry on a single N = 1 fermionic goldstino which has no bosonic supersymmetric

partners. The Volkov-Akulov goldstino model has also an alternative description via a nilpotent chiral

multiplet [6,7]. In such a multiplet the scalar component, sgoldstino, is not a fundamental field but a

bilinear combination of the fermions. The auxiliary field of the nilpotent multiplet is not vanishing,

which signifies a spontaneously broken supersymmetry.

The renewed interest to KKLT construction of de Sitter vacua is partly due to improved obser-

vational data on dark energy and inflationary cosmology. The update on dark energy follows from

combining Planck data with other astrophysical data, including Type Ia supernovae. The equation of

state of dark energy is now, according to [8]

w = �1.006± 0.045 . (1.1)

This supports the idea behind the KKLT construction and other constructions such as the large

volume scenario (LVS) [9] that lead to the string landscape scenario, that a cosmological constant

with w = �1 remains a good fit to data. In fact it is a much better fit than the one in 2003 when this

construction was suggested 1.

Further motivations for nilpotent superfields come from cosmology. The recent bottom-up approach

to cosmology [16–18] using an e↵ective d=4 N = 1 supergravity has very nice phenomenological

features. Namely, new supergravity models were constructed depending on two chiral superfields [16],

an inflaton superfield and a nilpotent superfield X satisfying the nilpotency condition X
2(x, ✓) = 0.

These models agree nicely with the Planck data [8], during inflation the scale of �⇢
⇢ and the tilt of a

power spectrum ns take their known observational values. Meanwhile, the level of primordial gravity

waves r depends on the curvature of the moduli space and is therefore flexible with regard to future

discovery of gravity waves or a new bound on r. At the minimum of inflationary potential in the

recent models in [18] supersymmetry is broken spontaneously in de Sitter vacua and the cosmological

1
For other approaches towards de Sitter space in string compactifications see [10–15].

2

Goldstino superfield

throat is dual to a cascade of Seiberg dualities in a theory with M fractional branes and N = KM

D3-branes (at some UV cuto↵ scale), the warp factor at the bottom of the throat is

z ⇠ exp
�
� 2⇡K

Mgs

�
(3.7)

Actually, di↵erent throats lead to di↵erent order 1 numerical factors in the exponent, related to the

amount of D3-branes disappearing in a duality period. The important point is however that the

parametric dependence in K and M is maintained, and therefore the throats lead to exponential

suppressions with respect to the bulk or cuto↵ scales.

4 Coupling the Nilpotent field to moduli and matter fields

We have seen that the parameter M reflects the breaking of supersymmetry, and the goldstino belongs

to a chiral nilpotent superfield X. In this section we provide a preliminary discussion of how X

might couple to the moduli and matter fields in a full string compactification, leaving a more detailed

description for the future.

Let us assume that the complex structure moduli and dilaton have been stabilised supersymmet-

rically by the fluxes, and consider as simple model of the remaining dynamics. We consider the (for

simplicity, a single) Kähler modulus T , the nilpotent superfield X, and a chiral superfield C as a

representative matter field, which we assume to be stabilized at C = 0 but we keep it in the action to

study how its components split after supersymmetry breaking.

In general the Kähler potential can be written as

K = �3 log (T + T
⇤) + c (T + T

⇤)n XX
⇤ + ZCC

⇤ + · · · (4.1)

where

Z = (T + T
⇤)m + b (T + T

⇤)k XX
⇤ (4.2)

The coe�cients c, b are arbitrary (after absorbing other coe�cients as field redefinitions of C ) and

also the ‘modular weights’ n,m, k which are expected to be non-positive rational numbers. Particular

cases are n,m, b = 0 corresponding to canonical kinetic terms for both X and C. Also the case

n = m = �1, k = �2, b = 1/3 corresponds to the Kähler potential K = �3 log(T +T
⇤�CC

⇤� cXX
⇤)

after scaling properly the fields C and X. The superpotential is

W = W0 +MX +Wmatter +Wnp (4.3)

where both W0 and M are functions of the complex structure moduli and dilaton at their minimum,

Wmatter = C
3 + · · · , and Wnp = Ae

�aT . We will work in the limit a (T + T
⇤) � 1 in order to have a

proper non-perturbative expansion.

The coupling between T and X modifies the appearance of M in the scalar potential and gives:

Vuplift =
|M |2

c (T + T ⇤)n+3 (4.4)
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Plug into SUGRA expression for V, V= VKKLT + Vuplift :

(just like KKLT, KKLMMT!)

Antibrane uplift from manifestly SUSY EFT!

Rocek,...,Komargodski, Seiberg,...

Ferrara, Kallosh, Linde,… 2013-15
Polchinski @ SUSY 2015

1 Effective Field Theory of KKLMMT Revisited

Please check the next set of arguments:

V = K�1
0

����
@W

@X

����
2

=
|⇢|2

K0
� 0 (1.1)

W = W0 +Wmatter +Wnp + ⇢X (1.2)

Vuplift =
|⇢|2

c(T + T ⇤)n+3
(1.3)

1. Recall that a probe brane in a D-brane background is described by the combi-

nation of the DBI and WZ actions:

S = �T3

Z
d4x

p
�g

✓
1

h

p
1� hgµ⌫@µr@⌫r �

q

h

◆
(1.4)

where the first term comes from the DBI action and the second term from

the Chern-Simons action
R
Ctx1x2x3 . For a D3 brane q = 1 the non-derivative

interaction cancels as should be for BPS states. For a brane/antibrane system,

q = �1 the two terms add and give rise to the vacuum energy plus Coulomb

interactions. So reading h�1
gives us the interaction.

We all agree with the eqs. 3.2 and 3.3 in my latest notes. But the scaling that

introduced the volume dependence in the warp factor also acts on the 5-form

F5 = dC4 + · · · which is the one that gives the potential for the antibrane. Let

us follow KKLMMT as close as possible. As we know, in the presence of fluxes

the 10D metric is of the form:

ds210 = e2A⌘µ⌫dx
µdx⌫ + e�2Agmndy

mdyn (1.5)

The 5-form field strength F5 = dC4 + ... is:

(F5)rtx1x2x3 =
@e4A

@r
(1.6)

Rescaling the 6d metric by gmn ! �gmn is compensated by e2A ! �e2A which

for � = V1/3
is what introduces the V1/3

factor in the 4d part of the metric

and gives rise to the famous V�4/3
in the uplift term. But this also scales the

solution for C4 by C4 ! �2C4. Recall that this is the source of the brane

antibrane coupling determined by h�1
with h�1 = e4A. So in the modification

of the antibrane to the coupling h�1 ! h�1
0 (1� �h/h0) we have now a scaling

of h0 as h�1
0 ! V2/3h�1

0 and so

h�1
0

✓
1� �h

h0

◆
! V2/3h�1

0

✓
1� V2/3 �h

h0

◆
(1.7)

1

2 Nilpotent goldstino

Here we will collect some properties of the nilpotent goldstino superfield X. In broken super-
gravity effective field theory the goldstino is eaten by the gravitino realising the super-HIggs
effect and the effective field theory has been known for more than 30 years. However if this
breaking happens at very low energies compared with the Planck mass, the goldstino cou-
plings can be described directly as an independent field in terms of a non-linear realisation
of supersymmetry, as in the original Volkov-Akulov formalism.

Extracting this effective field theory is useful if the process of supersymmetry breaking
is not fully under control such as due to strongly coupled systems or in brane models in which
the presence of different configurations of branes can break supersymmetry, sometimes even
partial breaking, and it would be important to have control on the low energy effective
theory in which supersymmetry is non-linearly realised.Over the years there have been
several approaches to describe the low-energy couplings of the goldstino in terms of spurion
or constrained superfields. We will follow here the approach of describing the goldstino in
terms of a chiral superfield X that is further constrained to be nilpotent X

2 = 0 with the
aim at describing the breaking of supersymmetry due to the presence of an anti D3 brane
in flux compactifications.

The couplings of a nilpotent chiral superfield can be described in terms of very simple
Kahler and superppotential as follows:

K = K0XX
⇤

W = ⇢X +W0 (2.1)

where K0, ⇢,W0 may be functions of other low-energy fields. Higher powers of X are not
present in K and W due to the nilpotency condition. Furthermore this condition implies
that for a nilpotent superfield X with components X0, , F :

X = X0(y) +
p
2 (y)✓ + F (y)✓✓̄ (2.2)

With, as usual, yµ = x
µ + i✓�

µ
✓̄. It is easy to see that the nilpotency constraint implies

that the scalar component of X is not a propagating field but it is given by [3]:

X0 =
  

2F
(2.3)

The effective field theory (EFT) of X reproduces the Volkov-Akulov action and has
been studied both in global and local supersymmetry. For the anti D3 brane in the KKLT
scenario, the representation in terms of X is very convenient since it allows the treatment of
the presence of the supersymmetry breaking driven by the anti brane in terms of standard
supergravity couplings of matter and moduli superfields to the nilpotent goldstino. The
fact that the scalar component of X is not a propagating field is very relevant: first it fits
well with the fact that the anti D3 brane is fixed at the tip of a warped throat and so it does
not have a modulus describing its motion, contrary to D3 branes. Second, in calculating the
scalar fields potential energy, there is no contribution for X0 and it is consistent to simply
set X0 = 0 when looking for vacuum configurations in the same way we set all fermions to
zero. This simplifies substantially the calculations.
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where the first term comes from the DBI action and the second term from
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• Supersymmetric gravity but SM broken SUSY (non-linearly realised)

• Inflation mechanism to also reduce the leading contribution to 𝜦

• Accidental approximate scale invariance

Goldstino superfield:   X    

Inflaton (relaxon)  superfield:   𝚽

Dilaton superfield:   T

the new degrees of freedom we propose in this section can help remove the sensitivity of the

spacetime curvature to UV-sensitive terms in the lagrangian.

To this end we postulate several new low-energy degrees of freedom: a low-energy gravity

sector that is very supersymmetric (with both a massless graviton and very light gravitino);

a dilaton-dilatino scalar supermultiplet T = (T , ⇠) that contains the low-energy pseudo-

Goldstone boson for accidental scale invariance plus its supersymmetric partners. All of the

above particles are assumed to be very light, and this assumption is checked ex post facto by

computing their masses once the model is fully formulated.

In addition to the above fields we also add a real scalar, �, not to be confused with the

Standard Model’s Higgs (which has been integrated out). The scalar � nonlinearly realizes su-

persymmetry (as do the photon and left-handed neutrinos), since its superpartner is assumed

to be heavy and so to have already been integrated out.

According to the rules for nonlinearly realizing supersymmetry given in [26, 27, 28, 29, 14],

we are to build our EFT using the standard rules [43, 44] for writing down a supergravity

lagrangian using specific types of constrained superfields for each particle in the theory that

does not have an explicit superpartner:

• The supersymmetry breaking order parameter F
X and the spin-half goldstino field G

turn out to be described by a chiral multiplet X that satisfies a nilpotent condition

X
2 = 0 that allows its scalar component X 2 X to be expressed in terms of G and F

X .

• Standard Model fermions are contained in chiral multiplets Y that satisfy the constraint

XY = 0 that allows its scalar part Y to be expressed in terms of other fields. Although

Y
2 is nonzero for fields satisfying this constraint, it happens that Y

3 = 0 pointwise

because its lowest component is necessarily proportional to products of fermionic Grass-

mann fields like G.

• Standard Model gauge bosons are contained within left-chiral spinor multiplets W (just

as if they were supersymmetric) but their fermionic partners get projected out as inde-

pendent fields by the constraint XW = 0.

• Real scalar fields, like the ‘relaxon’ �, are represented by a superfield � that satisfies the

constraint that X� = X�. This constraint removes both the fermionic and auxiliary

field parts of � as independent variables and implies in particular that the supercovariant

derivative D(X�) vanishes and so also D(X�
n
) = 0. It follows that the constraint

implies XF(�,�) = XF(�,�) is also left-chiral for an arbitrary function F . The

relaxaton field � should be light enough to appear in the EFT below the electron mass,

and were it not for this condition its role could be played by the Standard Model Higgs

itself. We discuss in 3 the naturalness issues associated with � being this light.

The theory is specified at the two-derivative level once the Kähler potential K, superpo-
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above form ultimately follows from the generality of the rules for nonlinearly realizing super-

symmetry described in [26], together with its coupling to supergravity [27, 28, 29]. Ref. [14]

explores more concretely why generic potentials are consistent with the above supergravity

form, using this general framework. When supersymmetry is nonlinearly realized (as it must

be in such theories) there is always a low-energy superfield X that is nilpotent, X2 = 0, since

this is what is required to represent the goldstino [26], and it is typically true that WX 6= 0

for this field. For systems where global supersymmetry breaks badly in the UV, for example,

the postivity of (1.3) is consistent with the non-supersymmetric low-energy scalar potential

U not being positive because WX ' µ
2 + U/(2µ2) + · · · and so |WX |2 ' µ

4 + U + · · · , since
constant terms in the potential are irrelevant in global supersymmetry. Supergravity com-

plicates things because gravity couples to all sources of energy, but also the gravity sector

introduces new auxiliary fields. In what follows we imagine that X is the only supermultiplet

to descend from the UV sector5 with nonzero derivative for W , so that Vglob / |WX |2.
The relaxation mechanism is now built around the structure of the scalar potential de-

scribed above. A (nonsupersymmetric) relaxon field � is introduced, whose mass is assumed

to be a bit smaller than the electron mass (so that it survives to appear in the low-energy

theory below the lightest known dangerous Standard Model field). This scalar appears in

particular in WX , and so long as a configuration exists for which WX = 0 then this will be a

minimum for Vglob. (A very similar mechanism is also commonly at work in supersymmetric

gauge theories, where charged scalars automatically seek the zero of the positive D-term po-

tential given in (1.2).) The relaxon field likes in this way to zero out the biggest (order M0
p )

contribution in (1.1). We return below to why it remains consistent to use the formalism of

nonlinearly realized supersymmetry when WX = 0.

Such a mechanism still leaves order M�2
p contributions to (1.1), and because these are not

positive definite they cannot as simply be removed using the same kind of relaxon mechanism.

Here is where accidental scale invariance finally plays a role. Motivated by the accidental

scaling symmetries known to be common in the low-energy limit of higher-dimensional super-

gravity, we propose that the theory comes to us with an action that is expanded in inverse

powers of a large scalar field ⌧ � 1,

S = S0 + S1 + S2 + S3 + · · · , (1.4)

with each term in this expansion scaling homogeneously in the sense that Sn ! �
1�ns

Sn

when gµ⌫ ! �gµ⌫ and ⌧ ! �
s
⌧ for constant �. This is as would be expected if S0 ! �S0 and

each successive term scales with an additional power of 1/⌧ relative to the previous one. The

scaling of S0 is chosen to be consistent with the scaling of the 4D Einstein-Hilbert action,

SEH / M
2
p

R
d4x

p
�g R, when written in Einstein frame.

Within a supergravity framework we imagine ⌧ being combined with an axion, a, into

a complex axio-dilaton field T = 1
2(⌧ + ia) that, together with a spin-half field ⇠, forms a

5The generality of the emergence of X in the far infrared carrying the main supersymmetry-breaking order

parameter (even if supersymmetry should be partly broken in a more complicated way, including by D-terms

in the UV, say) is argued in [26]
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the goldstone fermion, G, for supersymmetry breaking. We follow [27] and incorporate this

fermion into the present discussion using a chiral fieldX that satisfies a nilpotentcy constraint:

X
2 = 0 . (3.1)

This constraint removes any scalar superpartners of G and ensures that it nonlinearly realizes

supersymmetry. The couplings of such fields to supergravity are explored in [28].

The second new ingredient is an inflaton field � that can interpolate between a region

where the large supersymmetry-breaking energy dominates and one where it does not. Infla-

tion is then imagined to take place as the gravitational byproduct of the slow evolution of the

field � between these di↵erent regimes. With later applications to brane-antibrane inflation in

mind we imagine � also to arise within the sector for which supersymmetry is badly broken.

A nonsupersymmetric scalar � can also be represented by a chiral superfield � subject to a

constraint [27, 28], which in this case becomes:

D(X�) = 0 . (3.2)

This states that X� is left-chiral. If � is also real then the left-chiral field it is equal to

is X�, in which case (3.2) strengthens to the constraint X(� � �) = 0. In either case the

constraint removes the fermionic and auxiliary-field components of � in a way consistent with

nonlinearly realized supersymmetry.

To incorporate these fields into a supersymmetric framework with accidental approximate

scale invariance we repeat the previous section’s construction but now include these two new

fields. For example, the Kähler potential built only from the minimal superfields X, T and

� is, as before,

e
�K/3 = ⌧ � k +

h

⌧
+ · · · , (3.3)

where the ellipses denote higher orders in 1/⌧ , but now

k = K(�,�, ln ⌧) + (X +X)KX(�,�, ln ⌧) +XXK
XX

(�,�, ln ⌧) , (3.4)

and similarly for h and higher-order terms (although these are not needed in what follows).

The most general superpotential similarly is

W ' w0(�) +XwX(�,�) , (3.5)

where the unusual dependence of W on � is allowed because the constraint (3.2) ensures that

the result is chiral once multiplied by X.

The component lagrangian obtained from K and W is as given in [28]. The constraint

(3.1) ensures there is no independent propagating scalar for the X multiplet, but the kinetic
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2.1.2 Low-energy lagrangian

We incorporate accidental scale invariance by assuming the theory has an expansion in pow-

ers9 of 1/⌧ , where ⌧ := T + T . For supersymmetric theories this means W and e
�K/(3M2

p )

should be expanded in this way, although for W this doesn’t say much because we also assume

a := 2 Im T enjoys an axionic shift symmetry that prevents T from appearing in W at all.

Scale invariance for the leading term of the expansion of e�K/(3M2
p ) requires it to be a

homogeneous function of T and we are free to define T so that this leading term is homo-

geneous degree one. Subsequent orders in 1/⌧ break this scale invariance, as do loops built

from the leading term (because the above assumptions ensure that 1/⌧ plays the role of ~ in

this part of the theory). We assume all such corrections arise as integer powers of 1/⌧ .

The first terms in the expansion of the Kähler function therefore become

K(T, T ,X,X,�,�) ' �3M2
p lnP

with P(⌧, X,X,�,�) = ⌧ � k +
h

⌧
+ · · · (2.1)

and W (T,X,�) ' w0(�,�) +XwX(�) ,

where the ellipses denote higher orders in 1/⌧ and the functions k, h and W are otherwise

chosen to be the most general consistent with the constraints X2 = X(�� �) = 0:

k =
1

M2
p

h
K(�,�, ln ⌧) + (X +X)KX(�,�, ln ⌧) +XXK

XX
(�,�, ln ⌧)

i
, (2.2)

and similarly for h and higher-order terms (although these are not needed in what follows).

The series in 1/⌧ is written explicitly so the functions k and h do not depend on powers of

⌧ , but they can in principle10 depend on ln ⌧ as is indicated in (2.2).

Since all factors of Mp are explicit and X has dimension mass, the function K has di-

mension (mass)2, while KX has dimension (mass) and K
XX

is dimensionless. (The Mp’s are

chosen so that the � kinetic term and the ‘global supersymmetry’ term involving |wX |2 in

(2.7) are both independent of Mp.) The superpotential functions wn similarly have dimension

(mass)3�n. Because of the constraints X
2 = X(� � �) = 0 it is always possible to rescale

X ! X̃F(�,�), and this can be used to set K
XX

= 1 if K
XX

does not depend on ln ⌧ .

We now wish to compute the explicit form for the scalar potential VF given in supergravity

by (1.1), repeated here for convenience:

VF = e
K/M2

p


K

ĀB
DAWDBW � 3|W |2

M2
p

�
. (2.3)

Despite appearances there is an important change here relative to ordinary supergravity: the

absence of independent auxiliary fields in the constrained field � implies that the sums on

the indices A and B only run over the fields zA := {T,X} and not also over � [28].

9Because the theory is organized as an expansion in powers of 1/⌧ we take the field ⌧ to be dimensionless

(and so not canonically normalized).
10As we see below a logarithmic dependence on ⌧ can naturally arise once loop corrections are included.
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Working to leading nontrivial order in 1/⌧ we drop h/⌧ and higher orders, so

P ' ⌧ � k = ⌧ � K

M2
p

(2.4)

and the Kähler metric and is inverse appearing in this expression become

KAB '
3M2

p

P2

 
1 �k

X

�kX P k
XX

+ kXkX

!
and K

BA ' P
3M2

p

 
P + k2 k

X

k
X

k
XX

!
, (2.5)

where z
A := {T,X} and subscripts on k as usual denote di↵erentiation. Furthermore k2 :=

k
XX

kXkX
, kX := k

XX
k
X
and k

X = k
XX

kX with k
XX := 1/k

XX
. At leading order the Kähler

covariant derivatives for T and X (evaluated at X = 0) similarly become

DTW =
KTW

M2
p

= �3w0

P and DXW = WX +
KXW

M2
p

= wX +
3KXw0

PM2
p

. (2.6)

Denoting (as above) z
A = {T,X}, and neglecting subdominant powers of 1/⌧ one finds

the following F -term potential (see eq. (A.37) of Appendix A.3.2 for details)

VF ' 1

P2

"
1

3
KXX

wXwX +
KXXK

XT

M2
p

w0wX +
KXXK

TX

M2
p

wXw0 �
3(K

TT
� KXXK

TX
K

XT
)

1 + 2KXXKXKX
/M2

p

|w0|2
M4

p

#
.

(2.7)

The powers of Mp are here shown explicitly for later convenience, and follow directly from

the dimensions of X and T and from (2.4). The unusual M�4
p of the last term is an artefact

of T being dimensionless.

Notice that the entire potential vanishes if K is independent of T , and this happens

because in this case (2.4) is a no-scale model [31, 16] (i.e.K satisfies the identityK
AB

K
A
KB =

3M2
p ). Because K depends on T only through ln ⌧ it follows that each derivative with respect

to T costs a power of 1/⌧ and so the w0–wX mixing terms of (2.7) arise at order 1/⌧3 while

the |w0|2 term first appears at order 1/⌧4. Contributions from the function h in (2.1) involve

at least one additional power of 1/⌧ compared to those shown.

The kinetic terms for the scalars � and T are given by the second derivatives of K in the

usual way [28]. Evaluating at X = 0 and working to lowest order in 1/⌧ gives

� Lkin scalp
�g

= K
TT

@
µT @µT +K�� @

µ
�@µ�+

⇣
K�T

@
µT @µ�+ h.c.

⌘
(2.8)

=
3M2

p

P2

h
1 +O

⇣
⌧
�2
⌘i

@
µT @µT +

3

P

h
K�� +O

⇣
⌧
�1
⌘
+ · · ·

i
@
µ
�@µ�

� 3

P2

h
K� +O

⇣
⌧
�1
⌘
+ · · ·

i
@
µT @µ�+ h.c. .

The leading o↵-diagonal kinetic term for fluctuations can be removed through a field redef-

inition of the form �� ! �� + A �T where A = K�/(⌧K��) is a function of the background

fields; while correcting the diagonal kinetic terms only by subdominant powers of 1/⌧ .
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which uses K = K(ln ⌧) to conclude K
TT

/ 1/⌧2 and otherwise assumes K ⇠ M
2 and w0 ⇠ M

3

when � = v, whereM is a generic UV scale to be determined (and is eventually identified with

the Planck scale Mp). In later sections we see that the ⌧ -dependence of ordinary (Standard

Model) particles in this scenario is also generically

mTeV ⇠ Mp
⌧

(2.13)

and so this leading contribution to the potential at its minimum provides a natural explanation

for the successful numerology Vmin ⇠ (m2
TeV

/Mp)4 regardless of the value of ⌧ .

This entire picture using nonlinearly realized supersymmetry only makes sense if the F -

term of the X multiplet is large, presumably the scale of the masses of the superpartners of

Standard Model fields, and one might worry that this is not possible if WX = wX is being

arranged to be small. This would be a legitimate worry for global supersymmetry, but need

not be a problem in supergravity. To see why notice that the field equations set this auxiliary

field to be given by13

F
X ⇠ e

K/(3M2
p )K

XX

✓
WX +

KXW

M2
p

◆
' 1

P

✓
P
3

◆✓
3KXw0

PM2
p

◆
⇠ M

4

⌧M2
p
, (2.14)

which uses (2.6) with wX ' 0 as well as (2.5) to evaluate K
XX , while assuming the generic

dimensional estimates K
XX

⇠ O(1), KX ⇠ M and (as before) w0 ⇠ M
3.

Writing F
X = µ

2
X
and14 Vmin = ✏

5
m

4
vac, the three scales µX , m� and mvac determine the

three input parameters gv, M and ⌧ . In particular, successful Dark-Energy phenomenology

requires

mvac ⇠
M

2

Mp⌧
⇠

✓
Vmin

✏5

◆1/4

⇠ 6⇥ 10�10 GeV ⇠ 1 eV , (2.15)

which is equivalent to (2.13) inasmuch as it requires M/
p
⌧ to satisfy

M

⌧1/2
⇠

p
mvacMp ⇠ 3⇥ 104 GeV . (2.16)

Validity of using nonlinearly realized supersymmetry to describe Standard Model particles

also sets a lower bound F
X
> (104 GeV)2, say, which using (2.14) implies

µX ⇠ M
2

p
⌧Mp

⇠
p
⌧ mvac >⇠ 104 GeV . (2.17)

13For aficianados: we quote here the expression for F
X in Jordan frame rather than in Einstein frame (for

which the exponential pre-factor would have been e
K/2 rather than e

K/3). As argued in §4.2.3 Jordan frame

is the natural frame in which to specify the particle-physics scales that appear in these bounds, because it is

in the frame that particle masses are largely ⌧ -independent.
14We include here a factor ✏5 in Vmin where ✏ ⇠ 1/60 – whose roots lie in the stabilization mechanism for ⌧ ,

as explained below eq. (3.16) – since this ‘order-unity’ factor matters when inferring a size for ⌧ .
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Working to leading nontrivial order in 1/⌧ we drop h/⌧ and higher orders, so

P ' ⌧ � k = ⌧ � K

M2
p

(2.4)

and the Kähler metric and is inverse appearing in this expression become

KAB '
3M2

p

P2

 
1 �k

X

�kX P k
XX

+ kXkX

!
and K

BA ' P
3M2

p

 
P + k2 k

X

k
X

k
XX

!
, (2.5)

where z
A := {T,X} and subscripts on k as usual denote di↵erentiation. Furthermore k2 :=

k
XX

kXkX
, kX := k

XX
k
X
and k

X = k
XX

kX with k
XX := 1/k

XX
. At leading order the Kähler

covariant derivatives for T and X (evaluated at X = 0) similarly become

DTW =
KTW

M2
p

= �3w0

P and DXW = WX +
KXW

M2
p

= wX +
3KXw0

PM2
p

. (2.6)

Denoting (as above) z
A = {T,X}, and neglecting subdominant powers of 1/⌧ one finds

the following F -term potential (see eq. (A.37) of Appendix A.3.2 for details)

VF ' 1

P2

"
1

3
KXX

wXwX +
KXXK

XT

M2
p

w0wX +
KXXK

TX

M2
p

wXw0 �
3(K

TT
� KXXK

TX
K

XT
)

1 + 2KXXKXKX
/M2

p

|w0|2
M4

p

#
.

(2.7)

The powers of Mp are here shown explicitly for later convenience, and follow directly from

the dimensions of X and T and from (2.4). The unusual M�4
p of the last term is an artefact

of T being dimensionless.

Notice that the entire potential vanishes if K is independent of T , and this happens

because in this case (2.4) is a no-scale model [31, 16] (i.e.K satisfies the identityK
AB

K
A
KB =

3M2
p ). Because K depends on T only through ln ⌧ it follows that each derivative with respect

to T costs a power of 1/⌧ and so the w0–wX mixing terms of (2.7) arise at order 1/⌧3 while

the |w0|2 term first appears at order 1/⌧4. Contributions from the function h in (2.1) involve

at least one additional power of 1/⌧ compared to those shown.

The kinetic terms for the scalars � and T are given by the second derivatives of K in the

usual way [28]. Evaluating at X = 0 and working to lowest order in 1/⌧ gives

� Lkin scalp
�g

= K
TT

@
µT @µT +K�� @

µ
�@µ�+

⇣
K�T

@
µT @µ�+ h.c.

⌘
(2.8)

=
3M2

p

P2

h
1 +O

⇣
⌧
�2
⌘i

@
µT @µT +

3

P

h
K�� +O

⇣
⌧
�1
⌘
+ · · ·

i
@
µ
�@µ�

� 3

P2

h
K� +O

⇣
⌧
�1
⌘
+ · · ·

i
@
µT @µ�+ h.c. .

The leading o↵-diagonal kinetic term for fluctuations can be removed through a field redef-

inition of the form �� ! �� + A �T where A = K�/(⌧K��) is a function of the background

fields; while correcting the diagonal kinetic terms only by subdominant powers of 1/⌧ .
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2.1.2 Low-energy lagrangian

We incorporate accidental scale invariance by assuming the theory has an expansion in pow-

ers9 of 1/⌧ , where ⌧ := T + T . For supersymmetric theories this means W and e
�K/(3M2

p )

should be expanded in this way, although for W this doesn’t say much because we also assume

a := 2 Im T enjoys an axionic shift symmetry that prevents T from appearing in W at all.

Scale invariance for the leading term of the expansion of e�K/(3M2
p ) requires it to be a

homogeneous function of T and we are free to define T so that this leading term is homo-

geneous degree one. Subsequent orders in 1/⌧ break this scale invariance, as do loops built

from the leading term (because the above assumptions ensure that 1/⌧ plays the role of ~ in

this part of the theory). We assume all such corrections arise as integer powers of 1/⌧ .

The first terms in the expansion of the Kähler function therefore become

K(T, T ,X,X,�,�) ' �3M2
p lnP

with P(⌧, X,X,�,�) = ⌧ � k +
h

⌧
+ · · · (2.1)

and W (T,X,�) ' w0(�,�) +XwX(�) ,

where the ellipses denote higher orders in 1/⌧ and the functions k, h and W are otherwise

chosen to be the most general consistent with the constraints X2 = X(�� �) = 0:

k =
1

M2
p

h
K(�,�, ln ⌧) + (X +X)KX(�,�, ln ⌧) +XXK

XX
(�,�, ln ⌧)

i
, (2.2)

and similarly for h and higher-order terms (although these are not needed in what follows).

The series in 1/⌧ is written explicitly so the functions k and h do not depend on powers of

⌧ , but they can in principle10 depend on ln ⌧ as is indicated in (2.2).

Since all factors of Mp are explicit and X has dimension mass, the function K has di-

mension (mass)2, while KX has dimension (mass) and K
XX

is dimensionless. (The Mp’s are

chosen so that the � kinetic term and the ‘global supersymmetry’ term involving |wX |2 in

(2.7) are both independent of Mp.) The superpotential functions wn similarly have dimension

(mass)3�n. Because of the constraints X
2 = X(� � �) = 0 it is always possible to rescale

X ! X̃F(�,�), and this can be used to set K
XX

= 1 if K
XX

does not depend on ln ⌧ .

We now wish to compute the explicit form for the scalar potential VF given in supergravity

by (1.1), repeated here for convenience:

VF = e
K/M2

p


K

ĀB
DAWDBW � 3|W |2

M2
p

�
. (2.3)

Despite appearances there is an important change here relative to ordinary supergravity: the

absence of independent auxiliary fields in the constrained field � implies that the sums on

the indices A and B only run over the fields zA := {T,X} and not also over � [28].

9Because the theory is organized as an expansion in powers of 1/⌧ we take the field ⌧ to be dimensionless

(and so not canonically normalized).
10As we see below a logarithmic dependence on ⌧ can naturally arise once loop corrections are included.
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the goldstone fermion, G, for supersymmetry breaking. We follow [27] and incorporate this

fermion into the present discussion using a chiral fieldX that satisfies a nilpotentcy constraint:

X
2 = 0 . (3.1)

This constraint removes any scalar superpartners of G and ensures that it nonlinearly realizes

supersymmetry. The couplings of such fields to supergravity are explored in [28].

The second new ingredient is an inflaton field � that can interpolate between a region

where the large supersymmetry-breaking energy dominates and one where it does not. Infla-

tion is then imagined to take place as the gravitational byproduct of the slow evolution of the

field � between these di↵erent regimes. With later applications to brane-antibrane inflation in

mind we imagine � also to arise within the sector for which supersymmetry is badly broken.

A nonsupersymmetric scalar � can also be represented by a chiral superfield � subject to a

constraint [27, 28], which in this case becomes:

D(X�) = 0 . (3.2)

This states that X� is left-chiral. If � is also real then the left-chiral field it is equal to

is X�, in which case (3.2) strengthens to the constraint X(� � �) = 0. In either case the

constraint removes the fermionic and auxiliary-field components of � in a way consistent with

nonlinearly realized supersymmetry.

To incorporate these fields into a supersymmetric framework with accidental approximate

scale invariance we repeat the previous section’s construction but now include these two new

fields. For example, the Kähler potential built only from the minimal superfields X, T and

� is, as before,

e
�K/3 = ⌧ � k +

h

⌧
+ · · · , (3.3)

where the ellipses denote higher orders in 1/⌧ , but now

k = K(�,�, ln ⌧) + (X +X)KX(�,�, ln ⌧) +XXK
XX

(�,�, ln ⌧) , (3.4)

and similarly for h and higher-order terms (although these are not needed in what follows).

The most general superpotential similarly is

W ' w0(�) +XwX(�,�) , (3.5)

where the unusual dependence of W on � is allowed because the constraint (3.2) ensures that

the result is chiral once multiplied by X.

The component lagrangian obtained from K and W is as given in [28]. The constraint

(3.1) ensures there is no independent propagating scalar for the X multiplet, but the kinetic
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Inflationary potential

been designed as a field whose evolution parameterizes changes between large nonzero

wX and vanishing wX . The early-universe evolution of � while positive energies dom-

inate therefore provides an attractive picture of inflation in which the inflaton is not

completely divorced from Standard Model physics, and changes to ⌧ become correlated

with changes to the size of the observable universe.36 The inflationary models found in

this way come with scale invariance baked in (much like for the possible UV embeddings

described in §6.2), in a way that is known to help such models agree with observations,

along the lines described in [123]. We report the details of this scenario, and other ‘yoga

breathing’ exercises (relaxed inflation) in a future publication.

Yoga Dark Energy ties together many of the scales of physics and so its implications are

legion; further investigations are underway into several of these directions.
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A. Useful supergravity formulae

This appendix collects some useful formulae encountered in the main text when working with

supergravity models.

One of the cumbersome steps is inverting the Kähler metric. Consider then a Kähler

function of the form K = �3 lnP, where P = P(ZA). Then

KA = �3PA

P , K
AB

= �3P
AB

P +
3PAPB

P2
(A.1)

and so (as is easy to check) the inverse is

K
AB = �P

3


PAB +

PAPB

P � P 2

�
(A.2)

36In particular, from equation (2.25), which schematically can be written as V ⇠ (Aw
2
X⌧

2
�BwX⌧ +C)/⌧4,

it can be seen that it is possible to find a local minimum in the ⌧ direction whenever wX 6= 0 in which ⌧ is

stabilized at values of order 1 ⌧ ⌧ ⌧ 1026, (say ⌧ ⇠ 102 � 103) with positive values of V , while the inflaton

field � slowly rolls to its minimum at which wX = 0, providing a realization of large scale inflation. (A class of

functions wX has to be considered to provide the required number of efolds. For example wX = (a� bf(�2))

and f(x) a function that asymptotes to zero such as f(x) = e
�x can do it.) Once inflation finishes and wX ⇠ 0,

⌧ can roll towards its large global minimum ⌧ ⇠ 1026 similar to the end of inflation in [124].
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Figure 2: Minimum of potential for x once the extra terms are introduced and considering

large values of y such that the e�y2 term is negligible. Note that this is a minimum only in

the x direction and ⌧ is exponentially smaller than the original minimum and the value of the

potential at this minimum is much higher..

Figure 3: Potential for x and y. Ploting small values of x

in the minimum of figure 1. For a fix value of y we illustrate the minimum at a smaller value

of x (choosing D = 1/600, E = 1/10, a = 2). See figure 2.

The idea is that the field y would be the inflaton. It starts rolling at larger values for which

its potential is only a positive constant and while it runs the field x moves slightly its value

to satisfy Vx = 0 and positive curvature Vxx. Before y gets to its minimum Vxx may become

negative and the field x runs towards its large value minimum. We illustrate the 3D potential

as function of x and y in figures 3 and 4, for di↵erent range of values of x. Notice the big

di↵erence in scales. In this example the inflationary through happens at x ⇠ 3 whereas the

overall minimum of x is at around x ⇠ 10. Since x = log ⌧ these are very di↵erent scales.

The question is how much this potential captures our potentials in the draft. It actually is a

particular example of the general potential exhibited in equation (2.25) of the draft in which

x represents � and y = log ⌧ . The general expression for which kXT 6= 0 gives the negative

exponential we needed with the right power of e�x and proportional to wX so it essentially

vanishes when the field y is stabilised to its minimum y2 = log a and then we keep the potential

for ⌧ as in the draft.

2

Figure 4: Potential for x and y. Plotting larger values of x

3
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Henry Tye for many helpful conversations. CB’s research was partially supported by funds

from the Natural Sciences and Engineering Research Council (NSERC) of Canada. Research

at the Perimeter Institute is supported in part by the Government of Canada through NSERC

and by the Province of Ontario through MRI. The work of FQ has been partially supported

by STFC consolidated grants ST/P000681/1, ST/T000694/1.

A. Useful supergravity formulae

This appendix collects some useful formulae encountered in the main text when working with

supergravity models.

One of the cumbersome steps is inverting the Kähler metric. Consider then a Kähler

function of the form K = �3 lnP, where P = P(ZA). Then

KA = �3PA

P , K
AB

= �3P
AB

P +
3PAPB

P2
(A.1)

and so (as is easy to check) the inverse is

K
AB = �P

3


PAB +

PAPB

P � P 2

�
(A.2)

36In particular, from equation (2.25), which schematically can be written as V ⇠ (Aw
2
X⌧

2
�BwX⌧ +C)/⌧4,

it can be seen that it is possible to find a local minimum in the ⌧ direction whenever wX 6= 0 in which ⌧ is

stabilized at values of order 1 ⌧ ⌧ ⌧ 1026, (say ⌧ ⇠ 102 � 103) with positive values of V , while the inflaton

field � slowly rolls to its minimum at which wX = 0, providing a realization of large scale inflation. (A class of

functions wX has to be considered to provide the required number of efolds. For example wX = (a� bf(�2))

and f(x) a function that asymptotes to zero such as f(x) = e
�x can do it.) Once inflation finishes and wX ⇠ 0,

⌧ can roll towards its large global minimum ⌧ ⇠ 1026 similar to the end of inflation in [124].

– 62 –

been designed as a field whose evolution parameterizes changes between large nonzero

wX and vanishing wX . The early-universe evolution of � while positive energies dom-

inate therefore provides an attractive picture of inflation in which the inflaton is not

completely divorced from Standard Model physics, and changes to ⌧ become correlated

with changes to the size of the observable universe.36 The inflationary models found in

this way come with scale invariance baked in (much like for the possible UV embeddings

described in §6.2), in a way that is known to help such models agree with observations,

along the lines described in [123]. We report the details of this scenario, and other ‘yoga

breathing’ exercises (relaxed inflation) in a future publication.

Yoga Dark Energy ties together many of the scales of physics and so its implications are

legion; further investigations are underway into several of these directions.

Acknowledgements

We thank Aizhan Akhmetzhanova, Clare Burrage, Ed Copeland, Shanta de Alwis, Nemanja

Kaloper, Justin Khoury, Lloyd Knox, Francesco Muia, José de Jesús Padua Argüelles and
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High scale inflationary region

Figure 2: The Coulomb potential from the superpotential wX(�). Since V / |wX |2 this potential
reproduces the Coulomb interaction for large values of the brane separation � but at smaller distances
the interaction potential has a minimum and becomes repulsive. At large field values, and due to the
large amount of warping the potential is flat enough to give rise to inflation in a natural way.

type at distances larger than the string scale, we propose the following superpotential to

capture the brane-antibrane interaction:

W = W0 +XwX , wX = A� B

�4
(3.37)

Again, for constant K gives rise to a scalar potential VFtauexp

V =
|wX |2
⌧2

=

�
A�4 �B

�2

⌧2�8
=

|A|2
⌧2

� 2ReAB

�4⌧2
+

|B|2
�8⌧2

(3.38)

comparing with (3.27) and (3.28) we can see that the volume dependence of the first two

terms match (recalling ⌧ = V2/3) for the canonically normalised field � = �/⌧ and the warp

dependences match for

|A|2 = ↵e
�4⇢

, 2ReAB = �↵
2
e
�8⇢ (3.39)

which for real A,B this implies A ⇠ e
�2⇢

, B ⇠ e
�6⇢. For large values of the field � and

large warping, the third term |B|2
�8⌧2

is negligible. However at smaller values of � this term

stabilises the potential and, unlike the standard Coulomb interaction, it reaches a minimum

value (see the figure) and after that it becomes repulsive rather than attractive, at scales of

order the warped string scale or less. It is tantalising to propose this behaviour as the way

the brane-antibrane interaction becomes at those distances creating a brane-antibrane bound

state (branoniuim) instead of continuing to the singularity at � = 0.

Superpotential for the tachyon field

However there is more to this picture. Typically the anti D3 brane will host matter fields,

including Higgs-like scalar fields H that again will appear in the superpotential only coupled
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Low scale late time minimum



Warped D3-D3 Inflation Reconsidered

• If moduli stabilization is perturbative: No eta problem!

• Coulomb potential from SUSY Nilpotent formalism

• Gravitino mass during inflation>>than after (no KL problem!)

• Slow-roll
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the interaction potential has a minimum and becomes repulsive. At large field values, and due to the
large amount of warping the potential is flat enough to give rise to inflation in a natural way.

type at distances larger than the string scale, we propose the following superpotential to

capture the brane-antibrane interaction:

W = W0 +XwX , wX = A� B

�4
(3.37)

Again, for constant K gives rise to a scalar potential VFtauexp

V =
|wX |2
⌧2

=

�
A�4 �B

�2

⌧2�8
=

|A|2
⌧2

� 2ReAB

�4⌧2
+

|B|2
�8⌧2

(3.38)

comparing with (3.27) and (3.28) we can see that the volume dependence of the first two

terms match (recalling ⌧ = V2/3) for the canonically normalised field � = �/⌧ and the warp

dependences match for

|A|2 = ↵e
�4⇢

, 2ReAB = �↵
2
e
�8⇢ (3.39)

which for real A,B this implies A ⇠ e
�2⇢

, B ⇠ e
�6⇢. For large values of the field � and

large warping, the third term |B|2
�8⌧2

is negligible. However at smaller values of � this term

stabilises the potential and, unlike the standard Coulomb interaction, it reaches a minimum

value (see the figure) and after that it becomes repulsive rather than attractive, at scales of

order the warped string scale or less. It is tantalising to propose this behaviour as the way
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Brane separation as ‘relaxon’!

C, which have been argued to involve subdominant powers of ↵g. Di↵erentiating with respect

to the canonically normalized field ' ' �/
p
3P gives (for real wX) the slow-roll parameters
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, (3.44)

and

⌘ =
M

2
pV''

V
'

4M2
pwX''

wX

+ 12

✓
MpwX'

wX

◆2

(3.45)
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where the warping suppression enters through the factor g/t / e
�4⇢.

To see the need for warping it is useful to estimate the size of the factors that enter into

⌘ and ". To this end consider the following factor

⌘ 3 4

✓
3

P

◆2
 
20M2

p g

t|'|6

!
' 80P
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✓
g

t|�|4
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M

2
p

|�|2

!
. (3.46)

Estimating t ⇠ e
�2⇢

M
2
s and g ⇠ e

�6⇢
M

6
s and taking the inter-brane separation to be no

bigger than the extra dimensions, which means

� ⇠ M
2
s y <⇠ M

2
s /MKK ⇠ MsV1/6 ⇠ Ms P1/4 ⇠ Mp P�1/2 (3.47)

then allows the lower bound on (3.46) to be written

⌘ >⇠
80P
3

✓
e
�4⇢

P

◆
P . (3.48)

Although the requirement P � 1 precludes ⌘ being small for unwarped geometries [22], a

slow roll is possible provided e
�4⇢ ⌧ O(P�1) ⇠ O(V�2/3), which is consisent with the lower

bound e
�⇢ >⇠ V�2/3 given in (3.22).

We see that large enough warping now leads to the predictions ⌘ < 0 and " ⌧ |⌘| ⌧ 1,

and this is consistent with the stabilization of the modulus ⌧ without the ⌘ problem because it

is actually the full quantity P that is stabilized. Because " is hierarchically smaller than ⌘ it is

clear that the tensor to scalar ratio is so small that there should be no observable primordial

tensor fluctuations. If these should be observed in the next few years this inflationary scenario

would be decisively ruled out.

As inflation proceeds the value of wX decreases until at some point the above slow-

roll analysis breaks down. Then the fields roll more quickly until they are captured by the

minimum or the 4D EFT breaks down and we become unable to predict what happens (such

as by having brane and antibrane annihilate and release prodigious amounts of energy). One

scenario would be to have � reach the zero of wX before the EFT breaks down (such as
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The spectral index ns and tensor-to-scalar ratio r are given by the usual expressions

ns = 1 + 2⌘⇤ � 6"⇤ ' 1 + 2⌘⇤ and r = 16"⇤ (3.33)

in which "⇤ ⌧ |⌘⇤| is used in ns, showing that the measured value for ns fixes ⌘⇤ ' 1
2(ns�1) '

�0.015 and so Ne ' 56. Combining (3.32) and (3.33) and using the measured amplitude

�H = 1.9⇥ 10�5 then gives the following prediction for the scalar-to-tensor ratio

r = 16"⇤ '
64⇡

5

r
3

10
�H |ns � 1|5/2 ' 2⇥ 10�8

, (3.34)

which is too small to be observable in the foreseeable future.

Although at face value the warp factors (buried in ⌦) allow a potential as flat as desired,

this assumes that the physics that stabilizes the overall volume modulus appearing in ⌦

has been fixed in a way that does not significantly alter the potential for �. However, the

same shallowness that makes (3.26) attractive for inflation also makes it fragile to changes

associated with modulus stabilization, as can be most clearly seen by embedding the brane-

antibrane dynamics into a full 4D supergravity EFT that allows a consistent description of

both inflaton and modulus-stabilization. As argued in [24] this exercise opens up a new

problem (the ⌘ problem) that generically ruins the shallowness of the potential (3.26). We

repeat this exercise here to show why the RG stabilization mechanism avoids this problem.

3.4.1 The Nilpotent Superfield and anti-D3 Branes

An interesting feature of the nilpotent superfield formalism of §3.3 is that it captures very

e�ciently the physics of anti-D3 branes at the tip of a Calabi-Yau throat as described above

in this section. We now explore this connection and determine the choices that it implies for

quantities like K, w0 and wX .

Antibrane tension from the nilpotent superfield

First we recall how the P-dependence of the leading part of the potential built using a

nilpotent superfield reproduces the volume dependence of the anti-D3 brane tension at the

tip of the warped throat. For this recall that when W = w0 +wXX then the leading term in

the scalar potential (3.8) is

V ' KXX |wX |2
3P2

(3.35)

which for wX / e
�2⇢ reproduces the KKLT expression (3.24) once the volume modulus is

identified in the usual way: P = V2/3.

It is noteworthy that this agreement between the volume-dependence of the nilpotent

potential and the brane tension works only when one uses the warping-corrected volume-

dependence given in [24] rather than the original expression of [5] that does not include

warping. Only in the warped case is supersymmetry breaking su�ciently sequestered to be

captured using only the single goldstino field X. From the string point of view the fact the

– 29 –

Combining this brane tension term with the Coulomb interaction between a mobile D3

brane and the anti-D3 brane sitting in a warped environment gives the candidate brane-

antibrane inflation potential [22, 23, 24] (again in the Einstein frame):

V = 2T3(e
�4⇢V2/3)
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where ' is the canonically normalised field determining the brane separation y: ' =
p
T3 y

and the last equality evaluates T3 in Planck units using (3.25), and so
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M
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and b =
27
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. (3.27)

Naive inflationary analysis

Putting aside for the moment how V evolves given this potential, consider first the naive single-

field inflationary picture that emerges for ' evolution at fixed V. The slow-roll parameters

for this motion in the regime b⌦ ⌧ |'|4 are
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|'|6 . (3.28)

Although these can be made arbitrarily small by making |'| su�ciently large, as noted in

[22] inflation does not work (without the warp factors) because it would require the brane

separation to be larger than the typical linear extent of the extra dimensions. But if the

warp factors buried in ⌦ are small enough the slow roll conditions " ⌧ 1 and ⌘ ⌧ 1 can be

satisfied. Notice that these also imply that the ratio

� "

⌘
' 2b⌦

5|'|4 ⌧ 1 , (3.29)

is deep into the regime where quantum e↵ects are dominated by stochastic methods [60].

In terms of these the number of inflationary e-foldings between horizon exit and inflation’s

end is

Ne =
1
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'end
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(3.30)

and the amplitude of primordial scalar density perturbations becomes
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In these expressions '⇤ is the inflaton position at horizon exit, relative to which its value at

inflation’s end is neglected: '⇤ � 'end. The slow-roll parameters evaluated at horizon exit

then become

⌘⇤ = � 5

6Ne
, "⇤ =

20⇡�H

9
p
2N5/2

e

' 16⇡

5

r
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The spectral index ns and tensor-to-scalar ratio r are given by the usual expressions
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which is too small to be observable in the foreseeable future.

Although at face value the warp factors (buried in ⌦) allow a potential as flat as desired,

this assumes that the physics that stabilizes the overall volume modulus appearing in ⌦

has been fixed in a way that does not significantly alter the potential for �. However, the
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First we recall how the P-dependence of the leading part of the potential built using a
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the scalar potential (3.8) is
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which for wX / e
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identified in the usual way: P = V2/3.
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Ending inflation

• Higgs field as the tachyon to end inflation?

• Supersymmetric Coulomb potential ? Figure 3: The 3D potential for the brane separation � and the tachyon H.

Brane-antibrane inflation as relaxation inflation

Now we are finally in the position to analyse the full system to describe brane-antibrane

inflation including the inflaton field �, the volume modulus ⌧ and the tachyon H using the

full potential (2.5).

...include the full potential with

W = W0 +XwX(�,H) = W0 +X
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Compute the scalar potential and relate A and B with ⌦ above and extract the inflation

conditions...
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Figure 2: The Coulomb potential from the superpotential wX(�). Since V / |wX |2 this potential
reproduces the Coulomb interaction for large values of the brane separation � but at smaller distances
the interaction potential has a minimum and becomes repulsive. At large field values, and due to the
large amount of warping the potential is flat enough to give rise to inflation in a natural way. The
minimum of the potential lies outside the domain of validity of the EFT and only for large values of
� is this potential under control.

�. So once ⌧ is fixed by adding a holomorphic non-perturbative superpotential Wnp(T ), the

dependence of K on � introduces a potential energy that generates a mass for � because of

the potential’s overall dependence on e
K :
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It is the superpotential terms within bV0 that contain the small warp factors that allow bV0 to

depend so weakly on � that inflation can be possible. The value of bV0 also fixes the value

of the Hubble scale whenever the universal energy density is dominated by V , since then

H
2
I
' V/M

2
p ' bV0/(⌧3M2

p ). But when this is so eq. (3.41) shows (once the Mp factors are

reinstated) that � inevitably has a mass contribution that is of order m2
� ⇠ bV0/(⌧3M2

p ) ⇠ H
2
I

which therefore contributes a factor of order unity to the second slow-roll parameter ⌘ =

M
2
p V''/V ' m

2
�/H

2
I
. Slow roll is only achieved in the standard construction by including a

large (unwarped) �̄ � contribution into bV0 and tuning this to cancel against the term coming

from e
K . Even though inflation is achievable in this way, it needs a very particular fine tuning

and the Coulomb potential is essentially replaced by a tuned inflection-point inflation [61, 62].

The problem is quite generic because the Kähler potential very generally depends only

on P = ⌧ � k+ · · · but because the superpotential must be a holomorphic function it cannot

depend on P and must only depend on T and � separately. But – as already pointed out in

[24] – this also shows that it is potentially evaded if the modulus-stabilization mechanism can

arise from corrections to K rather than to W , provided these directly stabilize P rather than
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In this case the scalar potential is15 (assuming all constants real and positive)

V / |wX |2
P2
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�
t|�|4 � g

�2

P2|�|8 +
2�

�
t|�|4 � g

�

P2|�|4 |H|2 + �
2|H|4
P2

(3.50)

and so as long as the combination t� g/|�|4 is positive, the field H has a positive mass and

the potential is minimized at H = 0. But once � is small enough that t � g/|�|4 < 0 the

canonically normalised field H / H/
p
P acquires a tachyonic mass

m
2 =

2�

P

✓
t� g

|�|4

◆
< 0 . (3.51)

This captures the same behaviour as would be expected within string theory for a mode

of an open string stretching between the brane and the antibrane 16. Such a state becomes

lighter as the branes approach one other until at a critical distance it becomes tachyonic

(believed to herald the onset of the brane-antibrane annihilation instability). Indeed for large

separations, �, the mass for H predicted by (3.51) becomes proportional to t/P / e
�2⇢

/P,

which has the same warping and volume dependence as does the square of the warped string

scale. See Figure 4 for a plot of the potential as a function of � and H, showing in particular a

flat inflaton direction with a waterfall-style end of inflation occuring when the H field becomes

tachyonic.17 Notice that such a tachyonic field is easily ‘integrated in’ within our inflationary

picture simply by using (3.49) when evaluating |wX |4 in the scalar potential (3.43). Most of

our discussion goes through unchanged because most of our conclusions are independent of

the detailed functional dependence of wX(�).

This simple supersymmetric 4D EFT provides a transparent toy model that captures

many features of the full string brane-antibrane annihilation picture [63]. Since the tachyon

field’s expectation value breaks the gauge symmetries to which it couples this evolution of �

to an H waterfall provides a dynamical description of symmetry breaking in the antibrane

gauge sector.18 Depending on the scales chosen one might build models for which H breaks

a Grand Unified symmetry at very high scale, or perhaps break the symmetry group of the

15Notice that when two fields appear in a potential V / |wX(�,H)|2 there is generically a flat direction

H(�) defined by the condition wX(�,H) = 0. This direction is generically lifted by the D-term potential when

the fields carry charge (as would the brane-antibrane tachyon).
16The standard discussion assumes a mass term for the tachyon proportional to (�2�m2)H2 which becomes

tachyonic once � reaches the mass scale m. A similar expression can be obtained from (3.51) by expanding

� = �0 � �� with �� ⌧ �0 as done in [32].
17We here consider only the simplest potential for the tachyon. Further options can be chosen in order to

match the di↵erent proposals in the literature [63].
18The current intuition about the end-point of brane-antibrane annihilation within the full string theory is

that no perturbative states remain after tachyon condensation. A puzzle arises because the tachyon field only

breaks one combination of the two U(1) gauge symmetries that live on the two branes. It has been conjectured

that the second U(1) survives, but in a confining phase that is not manifested perturbatively [64, 65, 66, 67].

It is tantalising to propose that this late-time behaviour is instead governed by a brane-antibrane bound state

– similar to branonium [68] but corresponding to a nontrivial zero of wX – rather than continuing to the

singularity at � = 0.
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in Fig. 2), in which case the fields can be trapped by the late-time modulus-stabilization

solution near wX ⇠ 0 described in §3.2. It is not in general guaranteed that the volume

modulus must get trapped at its new minimum, since it can also overshoot and crest the

nearby local maximum, followed by a decompactification runaway to infinity.

Although trapping by the local minimum is not guaranteed, given e�cient enough re-

heating the ruthless e�ciency of Hubble friction often makes it much more robust than might

naively be expected (as can be seen by numerical evolution in the presence of a thermal

background in similar examples [10, 19, 11]). When such trapping occurs the value of the ⌧

modulus stabilized in its late time minimum ⌧ = ⌧0 can be exponentially larger than its values

during inflation. Since ⌧ determines the sizes of the string and Kaluza-Klein scales relative

to the Planck scale such a change can allow the possibility of inflation being controlled by

a much larger energy scale than is associated with low-energy supersymmetry breaking and

the later universe.

Any large excursion by ⌧ between inflation and now can easily require the canonical field

� ⇠ Mp ln ⌧ to run a distance larger than Mp. This need not be in contradiction with the

distance conjecture [26, 51] since the Kaluza-Klein levels provide explicit realizations of the

hypothesized infinite tower of states that descend into (and so ruin) the low-energy theory.

The only control issue concerns whether the evolution can be described purely within the

low-energy 4D EFT used here. As we have checked, this is easy to ensure during inflation

because the fields roll so slowly. It is also fairly easy to arrange for cosmological evolution at

later times since the late-time 4D EFT breaks down at scales of order Mp/⌧0 [11]. Whether a

4D description su�ces in between depends somewhat on the nature of the post-inflationary

evolution that intervenes between inflation and now, and for some choices of this its evolution

might require a more comprehensive UV treatment (such as perhaps along the lines of [54]).

3.5 Annihilation and the tachyon superpotential

We close with more speculative remarks about the small-� limit. Typically the anti D3 brane

also hosts other matter fields, including Higgs-like scalar fields H. These again appear in the

low-energy supergravity in a nonsupersymmetric way, appearing in the superpotential only

coupled to the goldstino superfield X such as through terms like W (H) = X|H|2.
Including this kind of coupling in the superpotential together with the Coulomb interac-

tion gives rise to a superpotential like:14

W = w0 +XwX with wX = t� g

|�|4 � �|H|2 . (3.49)

14Recall that XH is chiral for a constrained superfield representing a spinless state, allowing terms like

X|H|2 to appear in the superpotential.
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In this case the scalar potential is15 (assuming all constants real and positive)

V / |wX |2
P2

=

�
t|�|4 � g

�2

P2|�|8 +
2�

�
t|�|4 � g

�

P2|�|4 |H|2 + �
2|H|4
P2

(3.50)

and so as long as the combination t� g/|�|4 is positive, the field H has a positive mass and

the potential is minimized at H = 0. But once � is small enough that t � g/|�|4 < 0 the

canonically normalised field H / H/
p
P acquires a tachyonic mass

m
2 =

2�

P

✓
t� g

|�|4

◆
< 0 . (3.51)

This captures the same behaviour as would be expected within string theory for a mode

of an open string stretching between the brane and the antibrane 16. Such a state becomes

lighter as the branes approach one other until at a critical distance it becomes tachyonic

(believed to herald the onset of the brane-antibrane annihilation instability). Indeed for large

separations, �, the mass for H predicted by (3.51) becomes proportional to t/P / e
�2⇢

/P,

which has the same warping and volume dependence as does the square of the warped string

scale. See Figure 4 for a plot of the potential as a function of � and H, showing in particular a

flat inflaton direction with a waterfall-style end of inflation occuring when the H field becomes

tachyonic.17 Notice that such a tachyonic field is easily ‘integrated in’ within our inflationary

picture simply by using (3.49) when evaluating |wX |4 in the scalar potential (3.43). Most of

our discussion goes through unchanged because most of our conclusions are independent of

the detailed functional dependence of wX(�).

This simple supersymmetric 4D EFT provides a transparent toy model that captures

many features of the full string brane-antibrane annihilation picture [63]. Since the tachyon

field’s expectation value breaks the gauge symmetries to which it couples this evolution of �

to an H waterfall provides a dynamical description of symmetry breaking in the antibrane

gauge sector.18 Depending on the scales chosen one might build models for which H breaks

a Grand Unified symmetry at very high scale, or perhaps break the symmetry group of the

15Notice that when two fields appear in a potential V / |wX(�,H)|2 there is generically a flat direction

H(�) defined by the condition wX(�,H) = 0. This direction is generically lifted by the D-term potential when

the fields carry charge (as would the brane-antibrane tachyon).
16The standard discussion assumes a mass term for the tachyon proportional to (�2�m2)H2 which becomes

tachyonic once � reaches the mass scale m. A similar expression can be obtained from (3.51) by expanding

� = �0 � �� with �� ⌧ �0 as done in [32].
17We here consider only the simplest potential for the tachyon. Further options can be chosen in order to

match the di↵erent proposals in the literature [63].
18The current intuition about the end-point of brane-antibrane annihilation within the full string theory is

that no perturbative states remain after tachyon condensation. A puzzle arises because the tachyon field only

breaks one combination of the two U(1) gauge symmetries that live on the two branes. It has been conjectured

that the second U(1) survives, but in a confining phase that is not manifested perturbatively [64, 65, 66, 67].

It is tantalising to propose that this late-time behaviour is instead governed by a brane-antibrane bound state

– similar to branonium [68] but corresponding to a nontrivial zero of wX – rather than continuing to the

singularity at � = 0.
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Conclusions

• Renormalisation group may address Dine-Seiberg problem

• Perturbative moduli stabilization

• Supersymmetric treatment of brane-antibrane inflation (no eta nor KL problems!)

• Many open questions (end of inflation, explicit string models?)


